低数据PIM抑制剂活动预测的多任务可解释图注意机制模型。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-11-30 DOI:10.1007/s11030-024-11060-y
Zixiao Wang, Lili Sun, Yu Chang, Fang Yang, Kai Jiang
{"title":"低数据PIM抑制剂活动预测的多任务可解释图注意机制模型。","authors":"Zixiao Wang, Lili Sun, Yu Chang, Fang Yang, Kai Jiang","doi":"10.1007/s11030-024-11060-y","DOIUrl":null,"url":null,"abstract":"<p><p>The aberrant expression of proviral integration site for Moloney murine leukemia virus (PIM) kinases is closely related to various tumors and chemotherapy resistance, making them attractive targets for cancer therapy. However, due to the extremely high homology among the three PIM isoforms (PIM1, PIM2, PIM3) and the limited availability of existing bioactivity data, screening and designing selective PIM inhibitors remain a daunting challenge. To address this issue, this study constructed a multitask regression model that can simultaneously predict the half-maximal inhibitory concentration (IC<sub>50</sub> values). The model utilizes an attention mechanism to capture effects within local atomic groups and the interactions between different groups of atoms. Through weight sharing, the model enhances the accuracy of predicting PIM3 inhibitors by leveraging the rich and highly correlated data from PIM1 and PIM2 isoforms. Additionally, visualizing the weights of nodes (atoms in the molecule) in the model helps us to intuitively understand the relationship between molecular features and prediction outcomes, thereby enhancing the interpretability of the model. In summary, this work provides new insights and methods for performing activity prediction tasks for multiple similar targets in low-data scenarios.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multitask interpretable model with graph attention mechanism for activity prediction of low-data PIM inhibitors.\",\"authors\":\"Zixiao Wang, Lili Sun, Yu Chang, Fang Yang, Kai Jiang\",\"doi\":\"10.1007/s11030-024-11060-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aberrant expression of proviral integration site for Moloney murine leukemia virus (PIM) kinases is closely related to various tumors and chemotherapy resistance, making them attractive targets for cancer therapy. However, due to the extremely high homology among the three PIM isoforms (PIM1, PIM2, PIM3) and the limited availability of existing bioactivity data, screening and designing selective PIM inhibitors remain a daunting challenge. To address this issue, this study constructed a multitask regression model that can simultaneously predict the half-maximal inhibitory concentration (IC<sub>50</sub> values). The model utilizes an attention mechanism to capture effects within local atomic groups and the interactions between different groups of atoms. Through weight sharing, the model enhances the accuracy of predicting PIM3 inhibitors by leveraging the rich and highly correlated data from PIM1 and PIM2 isoforms. Additionally, visualizing the weights of nodes (atoms in the molecule) in the model helps us to intuitively understand the relationship between molecular features and prediction outcomes, thereby enhancing the interpretability of the model. In summary, this work provides new insights and methods for performing activity prediction tasks for multiple similar targets in low-data scenarios.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11060-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11060-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Moloney小鼠白血病病毒(PIM)激酶前整合位点的异常表达与多种肿瘤和化疗耐药密切相关,使其成为癌症治疗的重要靶点。然而,由于三种PIM亚型(PIM1、PIM2、PIM3)具有极高的同源性,以及现有生物活性数据的有限可用性,筛选和设计选择性PIM抑制剂仍然是一项艰巨的挑战。为了解决这一问题,本研究构建了一个可以同时预测半最大抑制浓度(IC50值)的多任务回归模型。该模型利用注意机制来捕捉局部原子群内的效应和不同原子群之间的相互作用。通过权值共享,该模型利用PIM1和PIM2亚型丰富且高度相关的数据,提高了预测PIM3抑制剂的准确性。此外,可视化模型中节点(分子中的原子)的权重有助于我们直观地理解分子特征与预测结果之间的关系,从而增强模型的可解释性。总之,这项工作为在低数据场景下执行多个相似目标的活动预测任务提供了新的见解和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multitask interpretable model with graph attention mechanism for activity prediction of low-data PIM inhibitors.

The aberrant expression of proviral integration site for Moloney murine leukemia virus (PIM) kinases is closely related to various tumors and chemotherapy resistance, making them attractive targets for cancer therapy. However, due to the extremely high homology among the three PIM isoforms (PIM1, PIM2, PIM3) and the limited availability of existing bioactivity data, screening and designing selective PIM inhibitors remain a daunting challenge. To address this issue, this study constructed a multitask regression model that can simultaneously predict the half-maximal inhibitory concentration (IC50 values). The model utilizes an attention mechanism to capture effects within local atomic groups and the interactions between different groups of atoms. Through weight sharing, the model enhances the accuracy of predicting PIM3 inhibitors by leveraging the rich and highly correlated data from PIM1 and PIM2 isoforms. Additionally, visualizing the weights of nodes (atoms in the molecule) in the model helps us to intuitively understand the relationship between molecular features and prediction outcomes, thereby enhancing the interpretability of the model. In summary, this work provides new insights and methods for performing activity prediction tasks for multiple similar targets in low-data scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Synthesis and antifungal activity of arecoline derivatives containing amino acid fragments. Discovery of selective ROCK2 inhibitors with free radical scavenging ability for the treatment of gouty arthritis. Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery. Synthesis and biological evaluation of rationally designed pyrazoles as insecticidal agents. Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1