{"title":"尼莫单抗和伊立替康通过内质网应激和线粒体介导途径协同诱导ros介导的宫颈癌细胞凋亡。","authors":"Fei Teng, Lujun Zhao","doi":"10.1002/bab.2693","DOIUrl":null,"url":null,"abstract":"<p><p>Irinotecan (CPT-11), a chemotherapeutic agent used to treat several types of cancer, induces cytotoxic effects on healthy cells. The epidermal growth factor receptor (EGFR) plays a crucial role in various forms of cancer. Nimotuzumab (NmAb), a monoclonal antibody that targets the EGFR, is utilized in some countries to treat malignancies that have an overexpression of EGFR. Yet, there is a lack of literature on the potential anticancer properties of the CPT-11 and NmAb combination on in vitro human cervical cancer cells. This study investigates the apoptosis mode of the CPT-11 and NmAb combination on cervical HeLa cancer cells. The Annexin V/propidium iodide staining examination demonstrated that the combination of CPT-11 and NmAb resulted in a decrease in the number of viable cells and more potent induction of cell apoptosis than the effects of CPT-11 or NmAb alone in HeLa cells. Furthermore, the combined treatment resulted in elevated levels of reactive oxygen species (ROS) and Ca<sup>2+</sup> compared to the treatment with CPT-11 or NmAb alone. Cells that were pretreated with N-acetyl-l-cysteine, a substance that scavenges ROS, and then treated with CPT-11, NmAb, or a combination of CPT-11 and NmAb exhibited higher numbers of viable cells compared to those treated with CPT-11 or NmAb alone. The combination of CPT-11 and NmAb resulted in significantly higher caspase-3, -8, and -9 activity levels than CPT-11 or NmAb alone, as measured by flow cytometer assay. The combination of CPT-11 and NmAb in HeLa cells resulted in elevated endoplasmic reticulum stress-, mitochondria-, and caspase-mediated proteins compared to treatment with CPT-11 or NmAb alone. According to these observations, NmAb enhances the effectiveness of CPT-11 in fighting cancer by stimulating cell death in the HeLa cells. Therefore, NmAb has the potential to improve the efficacy of CPT-11 as a future cervical cancer treatment in humans.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nimotuzumab and irinotecan synergistically induce ROS-mediated apoptosis by endoplasmic reticulum stress and mitochondrial-mediated pathway in cervical cancer.\",\"authors\":\"Fei Teng, Lujun Zhao\",\"doi\":\"10.1002/bab.2693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irinotecan (CPT-11), a chemotherapeutic agent used to treat several types of cancer, induces cytotoxic effects on healthy cells. The epidermal growth factor receptor (EGFR) plays a crucial role in various forms of cancer. Nimotuzumab (NmAb), a monoclonal antibody that targets the EGFR, is utilized in some countries to treat malignancies that have an overexpression of EGFR. Yet, there is a lack of literature on the potential anticancer properties of the CPT-11 and NmAb combination on in vitro human cervical cancer cells. This study investigates the apoptosis mode of the CPT-11 and NmAb combination on cervical HeLa cancer cells. The Annexin V/propidium iodide staining examination demonstrated that the combination of CPT-11 and NmAb resulted in a decrease in the number of viable cells and more potent induction of cell apoptosis than the effects of CPT-11 or NmAb alone in HeLa cells. Furthermore, the combined treatment resulted in elevated levels of reactive oxygen species (ROS) and Ca<sup>2+</sup> compared to the treatment with CPT-11 or NmAb alone. Cells that were pretreated with N-acetyl-l-cysteine, a substance that scavenges ROS, and then treated with CPT-11, NmAb, or a combination of CPT-11 and NmAb exhibited higher numbers of viable cells compared to those treated with CPT-11 or NmAb alone. The combination of CPT-11 and NmAb resulted in significantly higher caspase-3, -8, and -9 activity levels than CPT-11 or NmAb alone, as measured by flow cytometer assay. The combination of CPT-11 and NmAb in HeLa cells resulted in elevated endoplasmic reticulum stress-, mitochondria-, and caspase-mediated proteins compared to treatment with CPT-11 or NmAb alone. According to these observations, NmAb enhances the effectiveness of CPT-11 in fighting cancer by stimulating cell death in the HeLa cells. Therefore, NmAb has the potential to improve the efficacy of CPT-11 as a future cervical cancer treatment in humans.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2693\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2693","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nimotuzumab and irinotecan synergistically induce ROS-mediated apoptosis by endoplasmic reticulum stress and mitochondrial-mediated pathway in cervical cancer.
Irinotecan (CPT-11), a chemotherapeutic agent used to treat several types of cancer, induces cytotoxic effects on healthy cells. The epidermal growth factor receptor (EGFR) plays a crucial role in various forms of cancer. Nimotuzumab (NmAb), a monoclonal antibody that targets the EGFR, is utilized in some countries to treat malignancies that have an overexpression of EGFR. Yet, there is a lack of literature on the potential anticancer properties of the CPT-11 and NmAb combination on in vitro human cervical cancer cells. This study investigates the apoptosis mode of the CPT-11 and NmAb combination on cervical HeLa cancer cells. The Annexin V/propidium iodide staining examination demonstrated that the combination of CPT-11 and NmAb resulted in a decrease in the number of viable cells and more potent induction of cell apoptosis than the effects of CPT-11 or NmAb alone in HeLa cells. Furthermore, the combined treatment resulted in elevated levels of reactive oxygen species (ROS) and Ca2+ compared to the treatment with CPT-11 or NmAb alone. Cells that were pretreated with N-acetyl-l-cysteine, a substance that scavenges ROS, and then treated with CPT-11, NmAb, or a combination of CPT-11 and NmAb exhibited higher numbers of viable cells compared to those treated with CPT-11 or NmAb alone. The combination of CPT-11 and NmAb resulted in significantly higher caspase-3, -8, and -9 activity levels than CPT-11 or NmAb alone, as measured by flow cytometer assay. The combination of CPT-11 and NmAb in HeLa cells resulted in elevated endoplasmic reticulum stress-, mitochondria-, and caspase-mediated proteins compared to treatment with CPT-11 or NmAb alone. According to these observations, NmAb enhances the effectiveness of CPT-11 in fighting cancer by stimulating cell death in the HeLa cells. Therefore, NmAb has the potential to improve the efficacy of CPT-11 as a future cervical cancer treatment in humans.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.