乙烯基胺腈的离子与自由基结合的正式[4 + 2]方法获得高取代磺酰吡啶。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2024-11-30 DOI:10.1038/s42004-024-01368-z
Chanhyun Jung, Kwanghee Lee, Shanmugam Rajasekar, Ji-Youn Yim, Jaeuk Sim, Young Hee Lee, Jae-Hwan Kwak, Soonsil Hyun, Young Kee Kang, Mayavan Viji, Jae-Kyung Jung
{"title":"乙烯基胺腈的离子与自由基结合的正式[4 + 2]方法获得高取代磺酰吡啶。","authors":"Chanhyun Jung, Kwanghee Lee, Shanmugam Rajasekar, Ji-Youn Yim, Jaeuk Sim, Young Hee Lee, Jae-Hwan Kwak, Soonsil Hyun, Young Kee Kang, Mayavan Viji, Jae-Kyung Jung","doi":"10.1038/s42004-024-01368-z","DOIUrl":null,"url":null,"abstract":"Pyridazine derivatives hold significant interest due to their broad applications in pharmaceuticals and materials science, where they serve as valuable scaffolds for bioactive compounds and functional materials. Here, we report a formal [4 + 2] reaction for the synthesis of 5’-sulfonyl-4’-aryl-3-cyano substituted pyridazine compounds from the reaction between vinylogous enaminonitriles and sulfonyl hydrazides. The key features of our pyridazine synthesis include the transamidation of vinylogous enaminonitriles with sulfonyl hydrazide, radical sulfonylation of the resulting intermediate, and subsequent 6-endo-trig radical cyclization. This reaction proceeds smoothly to deliver a series of pyridazine derivatives in good to high yields. We also found that the sulfonyl group of the synthesized pyridazines can be transformed into C-, O-, or N-containing functional groups. A gram-scale experiment and a diverse transformation of synthesized pyridazines were also performed to validate the practicality of our developed process. In the synthesis of sulfonyl-substituted pyridazines, a 6-endo-trig cyclization via a radical pathway is both kinetically and thermodynamically favored over the cyclization via an ionic pathway, as supported by DFT calculations. Pyridazine is an aromatic heterocyclic compound that is utilized as a bioisostere for benzene or pyridine, and is found in the core scaffold of various drug molecules, making synthetic methods to access pyridazine scaffolds of high interest. Here, the authors report the synthesis of 5’-sulfonyl-4’-aryl-3-cyano substituted pyridazine compounds from a formal [4 + 2] reaction between vinylogous enaminonitriles and sulfonyl hydrazides.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-11"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608332/pdf/","citationCount":"0","resultStr":"{\"title\":\"Formal [4 + 2] combined ionic and radical approach of vinylogous enaminonitriles to access highly substituted sulfonyl pyridazines\",\"authors\":\"Chanhyun Jung, Kwanghee Lee, Shanmugam Rajasekar, Ji-Youn Yim, Jaeuk Sim, Young Hee Lee, Jae-Hwan Kwak, Soonsil Hyun, Young Kee Kang, Mayavan Viji, Jae-Kyung Jung\",\"doi\":\"10.1038/s42004-024-01368-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pyridazine derivatives hold significant interest due to their broad applications in pharmaceuticals and materials science, where they serve as valuable scaffolds for bioactive compounds and functional materials. Here, we report a formal [4 + 2] reaction for the synthesis of 5’-sulfonyl-4’-aryl-3-cyano substituted pyridazine compounds from the reaction between vinylogous enaminonitriles and sulfonyl hydrazides. The key features of our pyridazine synthesis include the transamidation of vinylogous enaminonitriles with sulfonyl hydrazide, radical sulfonylation of the resulting intermediate, and subsequent 6-endo-trig radical cyclization. This reaction proceeds smoothly to deliver a series of pyridazine derivatives in good to high yields. We also found that the sulfonyl group of the synthesized pyridazines can be transformed into C-, O-, or N-containing functional groups. A gram-scale experiment and a diverse transformation of synthesized pyridazines were also performed to validate the practicality of our developed process. In the synthesis of sulfonyl-substituted pyridazines, a 6-endo-trig cyclization via a radical pathway is both kinetically and thermodynamically favored over the cyclization via an ionic pathway, as supported by DFT calculations. Pyridazine is an aromatic heterocyclic compound that is utilized as a bioisostere for benzene or pyridine, and is found in the core scaffold of various drug molecules, making synthetic methods to access pyridazine scaffolds of high interest. Here, the authors report the synthesis of 5’-sulfonyl-4’-aryl-3-cyano substituted pyridazine compounds from a formal [4 + 2] reaction between vinylogous enaminonitriles and sulfonyl hydrazides.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608332/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01368-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01368-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

吡啶衍生物由于其在制药和材料科学中的广泛应用而引起了人们的极大兴趣,在这些领域它们作为生物活性化合物和功能材料的有价值的支架。本文报道了一个由乙烯基胺腈与磺酰肼反应合成5′-磺酰-4′-芳基-3-氰基取代吡嗪化合物的形式[4 + 2]反应。我们的吡啶合成的主要特点包括与磺酰肼的乙烯基胺腈的转酰胺化,产生的中间体的自由基磺酰化,以及随后的6-内三自由基环化。该反应顺利进行,产生了一系列高收率的吡嗪衍生物。我们还发现,合成的吡啶嘧啶的磺酰基可以转化为含C、O或n的官能团。还进行了克级实验和合成吡啶的多种转化,以验证所开发工艺的实用性。在磺基取代吡啶嗪的合成中,通过自由基途径进行的6-内三角环化在动力学和热力学上都优于通过离子途径进行的环化,这一点得到了DFT计算的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formal [4 + 2] combined ionic and radical approach of vinylogous enaminonitriles to access highly substituted sulfonyl pyridazines
Pyridazine derivatives hold significant interest due to their broad applications in pharmaceuticals and materials science, where they serve as valuable scaffolds for bioactive compounds and functional materials. Here, we report a formal [4 + 2] reaction for the synthesis of 5’-sulfonyl-4’-aryl-3-cyano substituted pyridazine compounds from the reaction between vinylogous enaminonitriles and sulfonyl hydrazides. The key features of our pyridazine synthesis include the transamidation of vinylogous enaminonitriles with sulfonyl hydrazide, radical sulfonylation of the resulting intermediate, and subsequent 6-endo-trig radical cyclization. This reaction proceeds smoothly to deliver a series of pyridazine derivatives in good to high yields. We also found that the sulfonyl group of the synthesized pyridazines can be transformed into C-, O-, or N-containing functional groups. A gram-scale experiment and a diverse transformation of synthesized pyridazines were also performed to validate the practicality of our developed process. In the synthesis of sulfonyl-substituted pyridazines, a 6-endo-trig cyclization via a radical pathway is both kinetically and thermodynamically favored over the cyclization via an ionic pathway, as supported by DFT calculations. Pyridazine is an aromatic heterocyclic compound that is utilized as a bioisostere for benzene or pyridine, and is found in the core scaffold of various drug molecules, making synthetic methods to access pyridazine scaffolds of high interest. Here, the authors report the synthesis of 5’-sulfonyl-4’-aryl-3-cyano substituted pyridazine compounds from a formal [4 + 2] reaction between vinylogous enaminonitriles and sulfonyl hydrazides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Chemical reactivity of RNA and its modifications with hydrazine. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex. Women in chemistry: Q&A with Dr Qi Hao. Women in chemistry: Q&A with Professor Mónica H. Pérez-Temprano.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1