接触砷、镉和铅与慢性肾病之间的关系:来自四个实用统计模型的证据。

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-11-30 DOI:10.1007/s10653-024-02318-3
Jiongli Huang, Jingying Mao, Huilin Liu, Zhongyou Li, Guiyun Liang, Dabiao Zhang, Junchao Yang, Wen Qin, Pingjing Wen, Yueming Jiang, Zhaoyu Mo
{"title":"接触砷、镉和铅与慢性肾病之间的关系:来自四个实用统计模型的证据。","authors":"Jiongli Huang, Jingying Mao, Huilin Liu, Zhongyou Li, Guiyun Liang, Dabiao Zhang, Junchao Yang, Wen Qin, Pingjing Wen, Yueming Jiang, Zhaoyu Mo","doi":"10.1007/s10653-024-02318-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Environmental exposure to arsenic (As), lead (Pb) and cadmium (Cd) may cause chronic kidney disease (CKD), with varying independent effects and unclear combined impact. This study aimed to evaluate these effects on CKD.</p><p><strong>Methods: </strong>1,398 individuals were included. Urine arsenic (UAs) was determined by atomic fluorescence method. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m<sup>2 </sup>or proteinuria. Generalized linear models (GLM), restricted cubic spline (RCS) models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were employed to study the independent and combined effects of exposure to As, Pb and Cd on CKD risk.</p><p><strong>Results: </strong>Compared with non-CKD subjects, UAs, UCd, BPb, and creatinine adjusted urinary cadmium (UCdCr) were all significantly higher in CKD subjects. Compared with the lowest quartiles, the ORs (95%CIs) of CKD risk in the highest quartiles were 2.09 (1.16-3.74) for UAs, 2.84(1.56-5.18) for UCd, and 1.79 (1.05-3.06) for UCdCr, respectively. UAs, UCd, and UCdCr were all significantly positively associated with CKD risk in p-trend tests. RCS models revealed non-linear links between UAs, UCd, UCdCr and CKD risk, while a linear dose-response existed for BPb and CKD risk. The OR (95%CI) in WQS models were 1.72 (1.25-2.36) with UAs being the highest weighing metal(loid). BKMR models showed co-exposure mixture linked to higher CKD risk when the ln-transformed metal(loid)s above their 55th percentile. The ln-transformed UAs and UCdCr was significantly positively associated with CKD risk when the other two ln-transformed metals levels were all fixed at their different percentile levels. Synergism between Cd and Pb was also apparent.</p><p><strong>Conclusions: </strong>Single As, and Cd exposure were positively associated with an increased CKD risk. Co-exposure to As, Pb and Cd was positively associated with CKD risk, with As playing a dominant role.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"6"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association between exposure to arsenic, cadmium, and lead and chronic kidney disease: evidence from four practical statistical models.\",\"authors\":\"Jiongli Huang, Jingying Mao, Huilin Liu, Zhongyou Li, Guiyun Liang, Dabiao Zhang, Junchao Yang, Wen Qin, Pingjing Wen, Yueming Jiang, Zhaoyu Mo\",\"doi\":\"10.1007/s10653-024-02318-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Environmental exposure to arsenic (As), lead (Pb) and cadmium (Cd) may cause chronic kidney disease (CKD), with varying independent effects and unclear combined impact. This study aimed to evaluate these effects on CKD.</p><p><strong>Methods: </strong>1,398 individuals were included. Urine arsenic (UAs) was determined by atomic fluorescence method. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m<sup>2 </sup>or proteinuria. Generalized linear models (GLM), restricted cubic spline (RCS) models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were employed to study the independent and combined effects of exposure to As, Pb and Cd on CKD risk.</p><p><strong>Results: </strong>Compared with non-CKD subjects, UAs, UCd, BPb, and creatinine adjusted urinary cadmium (UCdCr) were all significantly higher in CKD subjects. Compared with the lowest quartiles, the ORs (95%CIs) of CKD risk in the highest quartiles were 2.09 (1.16-3.74) for UAs, 2.84(1.56-5.18) for UCd, and 1.79 (1.05-3.06) for UCdCr, respectively. UAs, UCd, and UCdCr were all significantly positively associated with CKD risk in p-trend tests. RCS models revealed non-linear links between UAs, UCd, UCdCr and CKD risk, while a linear dose-response existed for BPb and CKD risk. The OR (95%CI) in WQS models were 1.72 (1.25-2.36) with UAs being the highest weighing metal(loid). BKMR models showed co-exposure mixture linked to higher CKD risk when the ln-transformed metal(loid)s above their 55th percentile. The ln-transformed UAs and UCdCr was significantly positively associated with CKD risk when the other two ln-transformed metals levels were all fixed at their different percentile levels. Synergism between Cd and Pb was also apparent.</p><p><strong>Conclusions: </strong>Single As, and Cd exposure were positively associated with an increased CKD risk. Co-exposure to As, Pb and Cd was positively associated with CKD risk, with As playing a dominant role.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 1\",\"pages\":\"6\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02318-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02318-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:环境暴露于砷(As),铅(Pb)和镉(Cd)可能导致慢性肾脏疾病(CKD),具有不同的独立影响和不明确的联合影响。本研究旨在评估这些对CKD的影响。方法:纳入1398例个体。用原子荧光法测定尿砷。采用石墨炉原子吸收光谱法测定尿镉(UCd)和血铅(BPb)水平。CKD被定义为肾小球滤过率(eGFR) 2或蛋白尿。采用广义线性模型(GLM)、限制三次样条(RCS)模型、加权分位数和(WQS)回归和贝叶斯核机回归(BKMR)模型研究砷、铅、镉暴露对慢性肾病风险的独立和联合影响。结果:与非CKD组相比,CKD组的UAs、UCd、BPb和肌酐调整尿镉(UCdCr)均显著升高。与最低四分位数相比,最高四分位数的CKD风险ORs (95% ci)分别为:UAs为2.09 (1.16-3.74),UCd为2.84(1.56-5.18),UCdCr为1.79(1.05-3.06)。p趋势试验显示,UAs、UCd和UCdCr均与CKD风险显著正相关。RCS模型显示,UAs、UCd、UCdCr与CKD风险之间存在非线性联系,而BPb与CKD风险之间存在线性剂量效应。WQS模型的OR (95%CI)为1.72(1.25 ~ 2.36),其中UAs是最大重量的金属(loid)。BKMR模型显示,当mn -转化金属(loid)高于第55个百分位数时,共暴露混合物与较高的CKD风险相关。当其他两种铅转化金属水平均固定在其不同的百分位数水平时,铅转化UAs和UCdCr与CKD风险显著正相关。Cd和Pb之间的协同作用也很明显。结论:单一砷和镉暴露与CKD风险增加呈正相关。砷、铅和镉的共暴露与CKD风险呈正相关,其中砷起主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Association between exposure to arsenic, cadmium, and lead and chronic kidney disease: evidence from four practical statistical models.

Background: Environmental exposure to arsenic (As), lead (Pb) and cadmium (Cd) may cause chronic kidney disease (CKD), with varying independent effects and unclear combined impact. This study aimed to evaluate these effects on CKD.

Methods: 1,398 individuals were included. Urine arsenic (UAs) was determined by atomic fluorescence method. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73mor proteinuria. Generalized linear models (GLM), restricted cubic spline (RCS) models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were employed to study the independent and combined effects of exposure to As, Pb and Cd on CKD risk.

Results: Compared with non-CKD subjects, UAs, UCd, BPb, and creatinine adjusted urinary cadmium (UCdCr) were all significantly higher in CKD subjects. Compared with the lowest quartiles, the ORs (95%CIs) of CKD risk in the highest quartiles were 2.09 (1.16-3.74) for UAs, 2.84(1.56-5.18) for UCd, and 1.79 (1.05-3.06) for UCdCr, respectively. UAs, UCd, and UCdCr were all significantly positively associated with CKD risk in p-trend tests. RCS models revealed non-linear links between UAs, UCd, UCdCr and CKD risk, while a linear dose-response existed for BPb and CKD risk. The OR (95%CI) in WQS models were 1.72 (1.25-2.36) with UAs being the highest weighing metal(loid). BKMR models showed co-exposure mixture linked to higher CKD risk when the ln-transformed metal(loid)s above their 55th percentile. The ln-transformed UAs and UCdCr was significantly positively associated with CKD risk when the other two ln-transformed metals levels were all fixed at their different percentile levels. Synergism between Cd and Pb was also apparent.

Conclusions: Single As, and Cd exposure were positively associated with an increased CKD risk. Co-exposure to As, Pb and Cd was positively associated with CKD risk, with As playing a dominant role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
A comparative analysis of three PM2.5 exposure metrics and their impact on respiratory disease hospitalizations in Lanzhou, China. Correction: Polychlorinated biphenyls induced toxicities upon cell lines and stem cells: a review. Overview of the heavy metal contamination in Mexico: sources of the contamination and issues in human health. Balancing application of plant growth-promoting bacteria and biochar in promoting selenium biofortification and remediating combined heavy metal pollution in paddy soil. Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1