先天性糖基化疾病核心聚焦的定量评估。

Q3 Physics and Astronomy Mass spectrometry Pub Date : 2024-01-01 Epub Date: 2024-11-26 DOI:10.5702/massspectrometry.A0159
Yoshinao Wada, Machiko Kadoya
{"title":"先天性糖基化疾病核心聚焦的定量评估。","authors":"Yoshinao Wada, Machiko Kadoya","doi":"10.5702/massspectrometry.A0159","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital disorders of glycosylation (CDG) include a group of diseases characterized by defects of N-glycan fucosylation. The analytical molecule of choice for the diagnosis of CDG affecting N-glycosylation is serum transferrin: approximately 10% of the glycans attached to transferrin are fucosylated via an α1,6 linkage at the innermost <i>N</i>-acetylglucosamine residue, termed \"core fucosylation.\" Isoelectric focusing (IEF) of transferrin is often used for diagnosis, but IEF is ineffective in detecting abnormal fucosylation. Here, we present mass spectrometry (MS) methods for detecting fucosylation disorders. First, the level of core fucosylation of the glycan attached to Asn630 of transferrin can be measured by the signal intensity ratio of tryptic peptide ions containing fucosylated and nonfucosylated biantennary oligosaccharides. The core fucosylation level at this glycosylation site in the 0- to 32-year-old group (<i>n</i> = 68) was 7.9 ± 1.7 (%, mean ± SD), and nearly null for SLC35C1-CDG caused by defects in the GDP-fucose transporter. More simply, fucosylation levels can be measured by quadrupole time-of-flight (QTOF) MS of intact transferrin. The fucosylation levels of intact transferrin measured by MS with a Q-mass analyzer, which is currently used as an instrumental standard for newborn screening for inborn errors of metabolism and has a lower resolution than the QTOF analyzer, correlated well with the values obtained by glycopeptide analysis. These methods, namely the analysis of glycopeptides or intact transferrin by Q MS, can also be used on dried blood spots and are expected to help facilitate the diagnosis of CDG affecting N-glycan fucosylation.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0159"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604788/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative Assessment of Core Fucosylation for Congenital Disorders of Glycosylation.\",\"authors\":\"Yoshinao Wada, Machiko Kadoya\",\"doi\":\"10.5702/massspectrometry.A0159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Congenital disorders of glycosylation (CDG) include a group of diseases characterized by defects of N-glycan fucosylation. The analytical molecule of choice for the diagnosis of CDG affecting N-glycosylation is serum transferrin: approximately 10% of the glycans attached to transferrin are fucosylated via an α1,6 linkage at the innermost <i>N</i>-acetylglucosamine residue, termed \\\"core fucosylation.\\\" Isoelectric focusing (IEF) of transferrin is often used for diagnosis, but IEF is ineffective in detecting abnormal fucosylation. Here, we present mass spectrometry (MS) methods for detecting fucosylation disorders. First, the level of core fucosylation of the glycan attached to Asn630 of transferrin can be measured by the signal intensity ratio of tryptic peptide ions containing fucosylated and nonfucosylated biantennary oligosaccharides. The core fucosylation level at this glycosylation site in the 0- to 32-year-old group (<i>n</i> = 68) was 7.9 ± 1.7 (%, mean ± SD), and nearly null for SLC35C1-CDG caused by defects in the GDP-fucose transporter. More simply, fucosylation levels can be measured by quadrupole time-of-flight (QTOF) MS of intact transferrin. The fucosylation levels of intact transferrin measured by MS with a Q-mass analyzer, which is currently used as an instrumental standard for newborn screening for inborn errors of metabolism and has a lower resolution than the QTOF analyzer, correlated well with the values obtained by glycopeptide analysis. These methods, namely the analysis of glycopeptides or intact transferrin by Q MS, can also be used on dried blood spots and are expected to help facilitate the diagnosis of CDG affecting N-glycan fucosylation.</p>\",\"PeriodicalId\":18243,\"journal\":{\"name\":\"Mass spectrometry\",\"volume\":\"13 1\",\"pages\":\"A0159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5702/massspectrometry.A0159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.A0159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

先天性糖基化障碍(CDG)包括一组以n -糖基化缺陷为特征的疾病。诊断CDG影响n -糖基化的分析分子选择是血清转铁蛋白:大约10%与转铁蛋白连接的聚糖通过最内层n -乙酰氨基葡萄糖残基上的α1,6键集中,称为“核心集中”。转铁蛋白的等电聚焦(IEF)常被用于诊断,但IEF在检测异常聚焦上是无效的。在这里,我们提出了检测聚焦失调的质谱(MS)方法。首先,转铁蛋白Asn630上附着的聚糖的核心聚焦化水平可以通过含有聚焦化和非聚焦化双天线寡糖的色氨酸离子的信号强度比来测量。在0- 32岁组(n = 68)中,该糖基化位点的核心聚焦水平为7.9±1.7 (%,mean±SD),而由GDP聚焦转运蛋白缺陷引起的SLC35C1-CDG几乎为零。更简单地说,聚焦水平可以通过完整转铁蛋白的四极杆飞行时间(QTOF)质谱来测量。用q -质谱分析仪测定完整转铁蛋白的聚焦水平,与糖肽分析获得的值具有良好的相关性。目前,q -质谱分析仪作为新生儿先天性代谢错误筛查的仪器标准,其分辨率低于QTOF分析仪。这些方法,即通过Q质谱分析糖肽或完整转铁蛋白,也可用于干燥血斑,有望有助于诊断影响n -聚糖聚焦化的CDG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Assessment of Core Fucosylation for Congenital Disorders of Glycosylation.

Congenital disorders of glycosylation (CDG) include a group of diseases characterized by defects of N-glycan fucosylation. The analytical molecule of choice for the diagnosis of CDG affecting N-glycosylation is serum transferrin: approximately 10% of the glycans attached to transferrin are fucosylated via an α1,6 linkage at the innermost N-acetylglucosamine residue, termed "core fucosylation." Isoelectric focusing (IEF) of transferrin is often used for diagnosis, but IEF is ineffective in detecting abnormal fucosylation. Here, we present mass spectrometry (MS) methods for detecting fucosylation disorders. First, the level of core fucosylation of the glycan attached to Asn630 of transferrin can be measured by the signal intensity ratio of tryptic peptide ions containing fucosylated and nonfucosylated biantennary oligosaccharides. The core fucosylation level at this glycosylation site in the 0- to 32-year-old group (n = 68) was 7.9 ± 1.7 (%, mean ± SD), and nearly null for SLC35C1-CDG caused by defects in the GDP-fucose transporter. More simply, fucosylation levels can be measured by quadrupole time-of-flight (QTOF) MS of intact transferrin. The fucosylation levels of intact transferrin measured by MS with a Q-mass analyzer, which is currently used as an instrumental standard for newborn screening for inborn errors of metabolism and has a lower resolution than the QTOF analyzer, correlated well with the values obtained by glycopeptide analysis. These methods, namely the analysis of glycopeptides or intact transferrin by Q MS, can also be used on dried blood spots and are expected to help facilitate the diagnosis of CDG affecting N-glycan fucosylation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mass spectrometry
Mass spectrometry Physics and Astronomy-Instrumentation
CiteScore
1.90
自引率
0.00%
发文量
3
期刊最新文献
Characterization of Ultraviolet-Degraded Polyethylene Terephthalate Film Using a Complementary Approach: Reactive Pyrolysis-Gas Chromatography-Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Mass Spectrometry as a First-Line Diagnostic Aid for Congenital Disorders of Glycosylation. A Method for High Throughput Free Fatty Acids Determination in a Small Section of Bovine Liver Tissue Using Supercritical Fluid Extraction Combined with Supercritical Fluid Chromatography-Medium Vacuum Chemical Ionization Mass Spectrometry. Comparison of Amine-Modified Polymeric Stationary Phases for Polar Metabolomic Analysis Based on Unified-Hydrophilic Interaction/Anion Exchange Liquid Chromatography/High-Resolution Mass Spectrometry (Unified-HILIC/AEX/HRMS). Mobilize a Proton to Transform the Collision-Induced Dissociation Spectral Pattern of a Cyclic Peptide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1