mettl3介导的m6A修饰调节肝癌细胞中多梳抑制复合体1 (PRC1)成分BMI1和RNF2。

IF 4.1 2区 医学 Q2 CELL BIOLOGY Molecular Cancer Research Pub Date : 2025-03-03 DOI:10.1158/1541-7786.MCR-24-0362
Weina Chen, Jinqiang Zhang, Wenbo Ma, Nianli Liu, Tong Wu
{"title":"mettl3介导的m6A修饰调节肝癌细胞中多梳抑制复合体1 (PRC1)成分BMI1和RNF2。","authors":"Weina Chen, Jinqiang Zhang, Wenbo Ma, Nianli Liu, Tong Wu","doi":"10.1158/1541-7786.MCR-24-0362","DOIUrl":null,"url":null,"abstract":"<p><p>Methyltransferase-like 3 (METTL3) is a primary RNA methyltransferase that catalyzes N6-methyladenosine (m6A) modification. The current study aims to further delineate the effect and mechanism of METTL3 in hepatocellular carcinoma (HCC). By using a murine model of hepatocellular cancer development induced via hydrodynamic tail vein injection, we showed that METTL3 enhanced HCC development. In cultured human HCC cell lines (Huh7 and PLC/PRF/5), we observed that stable knockdown of METTL3 by short hairpin RNA significantly decreased tumor cell proliferation, colony formation, and invasion, in vitro. When Huh7 and PLC/PRF/5 cells with short hairpin RNA knockdown of METTL3 were inoculated into the livers of SCID mice, we found that METTL3 knockdown significantly inhibited the growth of HCC xenograft tumors. These findings establish METTL3 as an important oncogene in HCC. Through m6A sequencing, RNA sequencing, and subsequent validation studies, we identified BMI1 and RNF2, two key components of the polycomb repressive complex 1, as direct downstream targets of METTL3-mediated m6A modification in HCC cells. Our data indicated that METTL3 catalyzed m6A modification of BMI1 and RNF2 mRNAs which led to increased mRNA stability via the m6A reader proteins IGF2BP1/2/3. Furthermore, we showed that the METTL3 inhibitor, STM2457, significantly inhibited HCC cell growth in vitro and in mice. Collectively, this study provides novel evidence that METTL3 promotes HCC development and progression through m6A modification of BMI1 and RNF2. Our findings suggest that the METTL3-m6A-BMI1/RNF2 signaling axis may represent a new therapeutic target for the treatment of HCC. Implications: The METTL3-m6A-BMI1/RNF2 signaling axis promotes HCC development and progression.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"190-201"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873720/pdf/","citationCount":"0","resultStr":"{\"title\":\"METTL3-Mediated m6A Modification Regulates the Polycomb Repressive Complex 1 Components BMI1 and RNF2 in Hepatocellular Carcinoma Cells.\",\"authors\":\"Weina Chen, Jinqiang Zhang, Wenbo Ma, Nianli Liu, Tong Wu\",\"doi\":\"10.1158/1541-7786.MCR-24-0362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methyltransferase-like 3 (METTL3) is a primary RNA methyltransferase that catalyzes N6-methyladenosine (m6A) modification. The current study aims to further delineate the effect and mechanism of METTL3 in hepatocellular carcinoma (HCC). By using a murine model of hepatocellular cancer development induced via hydrodynamic tail vein injection, we showed that METTL3 enhanced HCC development. In cultured human HCC cell lines (Huh7 and PLC/PRF/5), we observed that stable knockdown of METTL3 by short hairpin RNA significantly decreased tumor cell proliferation, colony formation, and invasion, in vitro. When Huh7 and PLC/PRF/5 cells with short hairpin RNA knockdown of METTL3 were inoculated into the livers of SCID mice, we found that METTL3 knockdown significantly inhibited the growth of HCC xenograft tumors. These findings establish METTL3 as an important oncogene in HCC. Through m6A sequencing, RNA sequencing, and subsequent validation studies, we identified BMI1 and RNF2, two key components of the polycomb repressive complex 1, as direct downstream targets of METTL3-mediated m6A modification in HCC cells. Our data indicated that METTL3 catalyzed m6A modification of BMI1 and RNF2 mRNAs which led to increased mRNA stability via the m6A reader proteins IGF2BP1/2/3. Furthermore, we showed that the METTL3 inhibitor, STM2457, significantly inhibited HCC cell growth in vitro and in mice. Collectively, this study provides novel evidence that METTL3 promotes HCC development and progression through m6A modification of BMI1 and RNF2. Our findings suggest that the METTL3-m6A-BMI1/RNF2 signaling axis may represent a new therapeutic target for the treatment of HCC. Implications: The METTL3-m6A-BMI1/RNF2 signaling axis promotes HCC development and progression.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":\" \",\"pages\":\"190-201\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-24-0362\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0362","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甲基转移酶样3 (METTL3)是一种主要的RNA甲基转移酶,催化n6 -甲基腺苷(m6A)修饰。本研究旨在进一步阐明METTL3在肝细胞癌(HCC)中的作用和机制。通过水动力尾静脉注射诱导小鼠肝癌发展模型,我们发现METTL3促进了HCC的发展。在体外培养的人肝癌细胞系(Huh7和PLC/PRF/5)中,我们观察到shRNA稳定敲低METTL3可显著降低肿瘤细胞的增殖、集落形成和侵袭。我们将METTL3 shRNA敲低的Huh7和PLC/PRF/5细胞接种到SCID小鼠肝脏中,发现METTL3敲低能显著抑制肝癌异种移植肿瘤的生长。这些发现证实了METTL3在HCC中是一个重要的癌基因。通过n6 -甲基腺苷测序(m6A- seq)、RNA测序(RNA- seq)和随后的验证研究,我们确定了BMI1和RNF2,多梳抑制复合体1 (PRC1)的两个关键成分,是mettl3介导的HCC细胞m6A修饰的直接下游靶点。我们的数据表明,METTL3催化m6A修饰BMI1和RNF2 mRNA,通过m6A读取器蛋白IGF2BP1/2/3增加mRNA的稳定性。此外,我们发现METTL3抑制剂STM2457在体外和小鼠中显著抑制HCC细胞的生长。总的来说,本研究提供了新的证据,证明METTL3通过m6A修饰BMI1和RNF2促进HCC的发生和进展。我们的研究结果表明,METTL3-m6A-BMI1/RNF2信号轴可能代表HCC治疗的新靶点。意义:METTL3-m6A-BMI1/RNF2信号轴促进HCC的发生和进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
METTL3-Mediated m6A Modification Regulates the Polycomb Repressive Complex 1 Components BMI1 and RNF2 in Hepatocellular Carcinoma Cells.

Methyltransferase-like 3 (METTL3) is a primary RNA methyltransferase that catalyzes N6-methyladenosine (m6A) modification. The current study aims to further delineate the effect and mechanism of METTL3 in hepatocellular carcinoma (HCC). By using a murine model of hepatocellular cancer development induced via hydrodynamic tail vein injection, we showed that METTL3 enhanced HCC development. In cultured human HCC cell lines (Huh7 and PLC/PRF/5), we observed that stable knockdown of METTL3 by short hairpin RNA significantly decreased tumor cell proliferation, colony formation, and invasion, in vitro. When Huh7 and PLC/PRF/5 cells with short hairpin RNA knockdown of METTL3 were inoculated into the livers of SCID mice, we found that METTL3 knockdown significantly inhibited the growth of HCC xenograft tumors. These findings establish METTL3 as an important oncogene in HCC. Through m6A sequencing, RNA sequencing, and subsequent validation studies, we identified BMI1 and RNF2, two key components of the polycomb repressive complex 1, as direct downstream targets of METTL3-mediated m6A modification in HCC cells. Our data indicated that METTL3 catalyzed m6A modification of BMI1 and RNF2 mRNAs which led to increased mRNA stability via the m6A reader proteins IGF2BP1/2/3. Furthermore, we showed that the METTL3 inhibitor, STM2457, significantly inhibited HCC cell growth in vitro and in mice. Collectively, this study provides novel evidence that METTL3 promotes HCC development and progression through m6A modification of BMI1 and RNF2. Our findings suggest that the METTL3-m6A-BMI1/RNF2 signaling axis may represent a new therapeutic target for the treatment of HCC. Implications: The METTL3-m6A-BMI1/RNF2 signaling axis promotes HCC development and progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
期刊最新文献
Single-cell and spatial transcriptomics reveal a tumor-associated macrophage subpopulation that mediates prostate cancer progression and metastasis. Empty spiracles homeobox 2 (EMX2) transcription factor functions as a tumor suppressor in renal cell carcinoma by targeting CADM1. KSR2 promotes self-renewal and clonogenicity of small-cell lung carcinoma. ANGEL2 modulates wildtype TP53 translation and doxorubicin chemosensitivity in colon cancer. Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1