DDP1编码的β-酮酰基辅酶A合成酶通过维持绒毡层脂质稳态控制水稻花药开裂和花粉育性。

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-12-03 DOI:10.1007/s00122-024-04786-8
Yibo Xu, Shixu Zhou, Jingfei Tian, Wenfeng Zhao, Jianxin Wei, Juan He, Wenye Tan, Lianguang Shang, Xinhua He, Rongbai Li, Yongfei Wang, Baoxiang Qin
{"title":"DDP1编码的β-酮酰基辅酶A合成酶通过维持绒毡层脂质稳态控制水稻花药开裂和花粉育性。","authors":"Yibo Xu, Shixu Zhou, Jingfei Tian, Wenfeng Zhao, Jianxin Wei, Juan He, Wenye Tan, Lianguang Shang, Xinhua He, Rongbai Li, Yongfei Wang, Baoxiang Qin","doi":"10.1007/s00122-024-04786-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>DDP1, encoding a β-Ketoacyl-CoA Synthase, regulates rice anther dehiscence and pollen fertility by affecting the deposition of lipid on anther epidermis and pollen wall. Anther dehiscence and pollen fertility are crucial for male fertility in rice. Here, we studied the function of Defective in Dehiscence and Pollen1 (DDP1), a novel member of the KCS family in rice, in regulating anther dehiscence and pollen fertility. DDP1 encodes an endoplasmic reticulum (ER)-localized protein and is ubiquitously expressed in various organs, predominately in the microspores and tapetum. The ddp1 mutant exhibited partial male sterility attributed to defective anther dehiscence and pollen fertility, which was notably distinct from those observed in Arabidopsis thaliana and rice mutants associated with lipid metabolism. Mutations of DDP1 altered the content and composition of wax on anther epidermis and pollen wall, causing abnormalities in their morphology. Moreover, genes implicated in lipid metabolism, pollen development, and anther dehiscence exhibited significantly altered expression levels in the ddp1 mutant. These findings indicate that DDP1 controls anther dehiscence and pollen fertility to ensure normal male development by modulating lipid homeostasis in the tapetum, thereby enhancing our understanding of the mechanisms underlying rice anther dehiscence and pollen fertility.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"1"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A β-ketoacyl-CoA synthase encoded by DDP1 controls rice anther dehiscence and pollen fertility by maintaining lipid homeostasis in the tapetum.\",\"authors\":\"Yibo Xu, Shixu Zhou, Jingfei Tian, Wenfeng Zhao, Jianxin Wei, Juan He, Wenye Tan, Lianguang Shang, Xinhua He, Rongbai Li, Yongfei Wang, Baoxiang Qin\",\"doi\":\"10.1007/s00122-024-04786-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>DDP1, encoding a β-Ketoacyl-CoA Synthase, regulates rice anther dehiscence and pollen fertility by affecting the deposition of lipid on anther epidermis and pollen wall. Anther dehiscence and pollen fertility are crucial for male fertility in rice. Here, we studied the function of Defective in Dehiscence and Pollen1 (DDP1), a novel member of the KCS family in rice, in regulating anther dehiscence and pollen fertility. DDP1 encodes an endoplasmic reticulum (ER)-localized protein and is ubiquitously expressed in various organs, predominately in the microspores and tapetum. The ddp1 mutant exhibited partial male sterility attributed to defective anther dehiscence and pollen fertility, which was notably distinct from those observed in Arabidopsis thaliana and rice mutants associated with lipid metabolism. Mutations of DDP1 altered the content and composition of wax on anther epidermis and pollen wall, causing abnormalities in their morphology. Moreover, genes implicated in lipid metabolism, pollen development, and anther dehiscence exhibited significantly altered expression levels in the ddp1 mutant. These findings indicate that DDP1 controls anther dehiscence and pollen fertility to ensure normal male development by modulating lipid homeostasis in the tapetum, thereby enhancing our understanding of the mechanisms underlying rice anther dehiscence and pollen fertility.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"138 1\",\"pages\":\"1\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04786-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04786-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:DDP1编码β-酮酰基辅酶a合成酶,通过影响花药表皮和花粉壁脂质沉积,调控水稻花药开裂和花粉育性。花药开裂和花粉育性对水稻雄性育性至关重要。本研究研究了水稻KCS家族的新成员“开裂与花粉缺陷基因1”(DDP1)在调控花药开裂和花粉育性中的作用。DDP1编码内质网(ER)定位蛋白,在各种器官中普遍表达,主要在小孢子和绒毡层中表达。ddp1突变体表现出部分雄性不育,这是由于花药开裂和花粉育性缺陷造成的,这与拟南芥和水稻中与脂质代谢相关的突变体明显不同。DDP1突变改变了花药表皮和花粉壁蜡质的含量和组成,导致其形态异常。此外,与脂质代谢、花粉发育和花药开裂有关的基因在ddp1突变体中表达水平显著改变。这些发现表明,DDP1通过调节绒毡层的脂质稳态控制花药开裂和花粉育性,从而保证雄性的正常发育,从而加深了我们对水稻花药开裂和花粉育性机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A β-ketoacyl-CoA synthase encoded by DDP1 controls rice anther dehiscence and pollen fertility by maintaining lipid homeostasis in the tapetum.

Key message: DDP1, encoding a β-Ketoacyl-CoA Synthase, regulates rice anther dehiscence and pollen fertility by affecting the deposition of lipid on anther epidermis and pollen wall. Anther dehiscence and pollen fertility are crucial for male fertility in rice. Here, we studied the function of Defective in Dehiscence and Pollen1 (DDP1), a novel member of the KCS family in rice, in regulating anther dehiscence and pollen fertility. DDP1 encodes an endoplasmic reticulum (ER)-localized protein and is ubiquitously expressed in various organs, predominately in the microspores and tapetum. The ddp1 mutant exhibited partial male sterility attributed to defective anther dehiscence and pollen fertility, which was notably distinct from those observed in Arabidopsis thaliana and rice mutants associated with lipid metabolism. Mutations of DDP1 altered the content and composition of wax on anther epidermis and pollen wall, causing abnormalities in their morphology. Moreover, genes implicated in lipid metabolism, pollen development, and anther dehiscence exhibited significantly altered expression levels in the ddp1 mutant. These findings indicate that DDP1 controls anther dehiscence and pollen fertility to ensure normal male development by modulating lipid homeostasis in the tapetum, thereby enhancing our understanding of the mechanisms underlying rice anther dehiscence and pollen fertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis). Comparative genomic prediction of resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum race 2) in watermelon: parametric and nonparametric approaches. Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning. Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq. Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1