基于聚合标签的强化学习序列标记。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-11-15 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1463164
Marcel Geromel, Philipp Cimiano
{"title":"基于聚合标签的强化学习序列标记。","authors":"Marcel Geromel, Philipp Cimiano","doi":"10.3389/frai.2024.1463164","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence labeling is pervasive in natural language processing, encompassing tasks such as Named Entity Recognition, Question Answering, and Information Extraction. Traditionally, these tasks are addressed via supervised machine learning approaches. However, despite their success, these approaches are constrained by two key limitations: a common mismatch between the training and evaluation objective, and the resource-intensive acquisition of ground-truth token-level annotations. In this work, we introduce a novel reinforcement learning approach to sequence labeling that leverages aggregate annotations by counting entity mentions to generate feedback for training, thereby addressing the aforementioned limitations. We conduct experiments using various combinations of aggregate feedback and reward functions for comparison, focusing on Named Entity Recognition to validate our approach. The results suggest that sequence labeling can be learned from purely count-based labels, even at the sequence-level. Overall, this count-based method has the potential to significantly reduce annotation costs and variances, as counting entity mentions is more straightforward than determining exact boundaries.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1463164"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604619/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sequence labeling via reinforcement learning with aggregate labels.\",\"authors\":\"Marcel Geromel, Philipp Cimiano\",\"doi\":\"10.3389/frai.2024.1463164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequence labeling is pervasive in natural language processing, encompassing tasks such as Named Entity Recognition, Question Answering, and Information Extraction. Traditionally, these tasks are addressed via supervised machine learning approaches. However, despite their success, these approaches are constrained by two key limitations: a common mismatch between the training and evaluation objective, and the resource-intensive acquisition of ground-truth token-level annotations. In this work, we introduce a novel reinforcement learning approach to sequence labeling that leverages aggregate annotations by counting entity mentions to generate feedback for training, thereby addressing the aforementioned limitations. We conduct experiments using various combinations of aggregate feedback and reward functions for comparison, focusing on Named Entity Recognition to validate our approach. The results suggest that sequence labeling can be learned from purely count-based labels, even at the sequence-level. Overall, this count-based method has the potential to significantly reduce annotation costs and variances, as counting entity mentions is more straightforward than determining exact boundaries.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1463164\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604619/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1463164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1463164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

序列标记在自然语言处理中非常普遍,包括命名实体识别、问题回答和信息提取等任务。传统上,这些任务是通过监督机器学习方法来解决的。然而,尽管这些方法取得了成功,但它们受到两个关键限制的约束:训练和评估目标之间的常见不匹配,以及获取基本事实令牌级注释的资源密集型。在这项工作中,我们引入了一种新的强化学习方法来进行序列标记,该方法通过计数实体提及来利用聚合注释来生成训练反馈,从而解决了上述限制。我们使用聚合反馈和奖励函数的各种组合进行实验进行比较,重点关注命名实体识别来验证我们的方法。结果表明,即使在序列水平上,序列标记也可以从纯粹基于计数的标记中学习。总的来说,这种基于计数的方法有可能显著降低注释成本和差异,因为计数实体提及比确定确切的边界更直接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequence labeling via reinforcement learning with aggregate labels.

Sequence labeling is pervasive in natural language processing, encompassing tasks such as Named Entity Recognition, Question Answering, and Information Extraction. Traditionally, these tasks are addressed via supervised machine learning approaches. However, despite their success, these approaches are constrained by two key limitations: a common mismatch between the training and evaluation objective, and the resource-intensive acquisition of ground-truth token-level annotations. In this work, we introduce a novel reinforcement learning approach to sequence labeling that leverages aggregate annotations by counting entity mentions to generate feedback for training, thereby addressing the aforementioned limitations. We conduct experiments using various combinations of aggregate feedback and reward functions for comparison, focusing on Named Entity Recognition to validate our approach. The results suggest that sequence labeling can be learned from purely count-based labels, even at the sequence-level. Overall, this count-based method has the potential to significantly reduce annotation costs and variances, as counting entity mentions is more straightforward than determining exact boundaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Evaluating the effectiveness of prompt engineering for knowledge graph question answering. The sociolinguistic foundations of language modeling. Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron. Dynamic-budget superpixel active learning for semantic segmentation. Protecting digital assets using an ontology based cyber situational awareness system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1