{"title":"纹状体回路刺激抑制纹状体多巴胺释放和运动。","authors":"Taro Okunomiya, Dai Watanabe, Haruhiko Banno, Takayuki Kondo, Keiko Imamura, Ryosuke Takahashi, Haruhisa Inoue","doi":"10.1523/JNEUROSCI.0457-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756628/pdf/","citationCount":"0","resultStr":"{\"title\":\"Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion.\",\"authors\":\"Taro Okunomiya, Dai Watanabe, Haruhiko Banno, Takayuki Kondo, Keiko Imamura, Ryosuke Takahashi, Haruhisa Inoue\",\"doi\":\"10.1523/JNEUROSCI.0457-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0457-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0457-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion.
The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles