纹状体回路刺激抑制纹状体多巴胺释放和运动。

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2025-01-22 DOI:10.1523/JNEUROSCI.0457-24.2024
Taro Okunomiya, Dai Watanabe, Haruhiko Banno, Takayuki Kondo, Keiko Imamura, Ryosuke Takahashi, Haruhisa Inoue
{"title":"纹状体回路刺激抑制纹状体多巴胺释放和运动。","authors":"Taro Okunomiya, Dai Watanabe, Haruhiko Banno, Takayuki Kondo, Keiko Imamura, Ryosuke Takahashi, Haruhisa Inoue","doi":"10.1523/JNEUROSCI.0457-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756628/pdf/","citationCount":"0","resultStr":"{\"title\":\"Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion.\",\"authors\":\"Taro Okunomiya, Dai Watanabe, Haruhiko Banno, Takayuki Kondo, Keiko Imamura, Ryosuke Takahashi, Haruhisa Inoue\",\"doi\":\"10.1523/JNEUROSCI.0457-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0457-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0457-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物纹状体分为两种解剖结构:岛状、富含mu阿片受体(MOR)的纹状体室和周围基质室。两个隔室都有两种类型的脊髓投射神经元(SPNs),多巴胺受体D1 (D1R)表达的直接通路SPNs (dSPNs)和多巴胺受体D2 (D2R)表达的间接通路SPNs。这些区隔化的结构在运动障碍的发展中具有不同的作用,尽管纹状体区隔在运动控制和多巴胺调节方面的功能意义仍有待阐明。本研究旨在探讨纹状体在自由运动小鼠运动和多巴胺动力学中的作用。我们用雄性MOR- creer小鼠靶向纹状体表达MOR的神经元,在MOR启动子下表达他莫昔芬诱导的Cre重组酶,以及Cre依赖的腺相关病毒载体。目标神经元群主要由dspn组成。我们发现,gq偶联设计物受体仅被设计物药物(DREADD)激活,对纹状体表达mor的神经元进行化学发生刺激,导致对侧旋转次数和总移动距离减少。采用遗传编码多巴胺传感器的无线纤维光度法显示,化学发生刺激纹状体表达莫尔的神经元抑制了自由运动小鼠背纹状体的多巴胺信号。多巴胺平均信号的减少和瞬态信号的减少分别与同侧旋转位移和平均速度的降低有关。因此,纹状体dSPNs的一个子集抑制对侧旋转、运动和多巴胺释放,这与泛dSPNs的作用相反。我们的研究结果表明纹状体表达mor的神经元在运动控制和多巴胺调节中具有不同的作用。纹状体在运动控制中起着至关重要的作用,它由两个解剖室组成:富含mu阿片受体(MOR)的纹状体和周围基质。纹状体向中脑多巴胺能神经元发送传出抑制,但纹状体是否参与行为动物的运动控制和多巴胺调节尚不清楚。我们使用基于mor表达的靶向、化学遗传学和无线纤维光度法,使用遗传编码的多巴胺传感器,我们发现化学遗传学刺激纹状体表达mor的神经元抑制对侧旋转、运动和背纹状体多巴胺释放。旋转移位和运动减少可能与多巴胺动力学有不同的关系。本研究提供了令人信服的证据,表明纹状体表达莫尔的神经元抑制自由运动动物的运动行为和多巴胺释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion.

The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
Characterizing Brain-Cardiovascular Aging Using Multiorgan Imaging and Machine Learning Distinct patterns of PV and SST GABAergic neuronal activity in the basal forebrain during olfactory-guided behavior in mice. Neurofibromin deficiency alters the patterning and prioritization of motor behaviors in a state-dependent manner. Rab27b promotes lysosomal function and alpha-synuclein clearance in neurons. Sleep modulates neural timescales and spatiotemporal integration in the human cortex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1