基于关节间机械接触的足部软组织结构效应定量评估。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI:10.1002/cnm.3888
N Mancera-Campos, A Vidal-Lesso, J Bayod López
{"title":"基于关节间机械接触的足部软组织结构效应定量评估。","authors":"N Mancera-Campos, A Vidal-Lesso, J Bayod López","doi":"10.1002/cnm.3888","DOIUrl":null,"url":null,"abstract":"<p><p>Developing realistic numerical foot models is essential to accurately predict the structural behavior of its bones and soft tissues. The representation of the foot joints is a crucial point that must be considered to recreate these models' natural behavior. Numerically, different types of contact represent these interactions, two being the most common: one that allows movement between bones and one that restricts it. However, the structural behavior of the model is affected depending on which type of contact is chosen to simulate the interaction. Therefore, this paper aims to develop a numerical foot model to analyze and quantify both types of mechanical contact and determine their effect on soft tissues by evaluating and comparing different structural parameters. The results show that the TA, CPF, LPF, EDB, and FDBT soft tissues reach the maximum stress and strain levels like the highest displacement values. The differences between models in these tissues reach percentage values of up to 74.69% for the principal stresses and up to 68.42% for the principal strains. Significant differences were also found in the displacements obtained in the anteroposterior axes (X) and the vertical or the load axis (Y) of up to 42.03% and 37.47%, respectively. These results allow us to quantify the impact that the choice of the contact type of the foot joints has over its soft tissues and suggest that the way of simulating the movement between bones contributes significantly to the quantitative variation of the structural parameters, affecting thus, the predictions made in the several studies performed with foot numerical models; a contact type that reproduces the natural joint movement is the better option based on this work results.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3888"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Assessment of the Structural Effects in Foot Soft Tissues Depending on the Mechanical Contact Between Joints.\",\"authors\":\"N Mancera-Campos, A Vidal-Lesso, J Bayod López\",\"doi\":\"10.1002/cnm.3888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing realistic numerical foot models is essential to accurately predict the structural behavior of its bones and soft tissues. The representation of the foot joints is a crucial point that must be considered to recreate these models' natural behavior. Numerically, different types of contact represent these interactions, two being the most common: one that allows movement between bones and one that restricts it. However, the structural behavior of the model is affected depending on which type of contact is chosen to simulate the interaction. Therefore, this paper aims to develop a numerical foot model to analyze and quantify both types of mechanical contact and determine their effect on soft tissues by evaluating and comparing different structural parameters. The results show that the TA, CPF, LPF, EDB, and FDBT soft tissues reach the maximum stress and strain levels like the highest displacement values. The differences between models in these tissues reach percentage values of up to 74.69% for the principal stresses and up to 68.42% for the principal strains. Significant differences were also found in the displacements obtained in the anteroposterior axes (X) and the vertical or the load axis (Y) of up to 42.03% and 37.47%, respectively. These results allow us to quantify the impact that the choice of the contact type of the foot joints has over its soft tissues and suggest that the way of simulating the movement between bones contributes significantly to the quantitative variation of the structural parameters, affecting thus, the predictions made in the several studies performed with foot numerical models; a contact type that reproduces the natural joint movement is the better option based on this work results.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\" \",\"pages\":\"e3888\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cnm.3888\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3888","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

建立真实的足部数值模型对于准确预测其骨骼和软组织的结构行为至关重要。再现这些模型的自然行为必须考虑到足关节的表现是至关重要的一点。从数字上讲,不同类型的接触代表了这些相互作用,其中两种是最常见的:一种允许骨骼之间的运动,另一种限制骨骼之间的运动。然而,模型的结构行为取决于选择哪种类型的接触来模拟相互作用。因此,本文旨在建立一个数值脚模型,通过评估和比较不同的结构参数来分析和量化这两种类型的机械接触,并确定它们对软组织的影响。结果表明,TA、CPF、LPF、EDB和FDBT软组织均达到最大应力应变水平,同时也达到最高位移值。在这些组织中,模型之间的差异在主应力和主应变方面的百分比值分别高达74.69%和68.42%。在前后轴(X)和垂直或载荷轴(Y)上获得的位移也有显著差异,分别高达42.03%和37.47%。这些结果使我们能够量化足关节接触类型的选择对其软组织的影响,并表明模拟骨骼之间运动的方式对结构参数的定量变化有显著贡献,从而影响了用足部数值模型进行的几项研究中的预测;基于此工作结果,再现自然关节运动的接触类型是更好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Assessment of the Structural Effects in Foot Soft Tissues Depending on the Mechanical Contact Between Joints.

Developing realistic numerical foot models is essential to accurately predict the structural behavior of its bones and soft tissues. The representation of the foot joints is a crucial point that must be considered to recreate these models' natural behavior. Numerically, different types of contact represent these interactions, two being the most common: one that allows movement between bones and one that restricts it. However, the structural behavior of the model is affected depending on which type of contact is chosen to simulate the interaction. Therefore, this paper aims to develop a numerical foot model to analyze and quantify both types of mechanical contact and determine their effect on soft tissues by evaluating and comparing different structural parameters. The results show that the TA, CPF, LPF, EDB, and FDBT soft tissues reach the maximum stress and strain levels like the highest displacement values. The differences between models in these tissues reach percentage values of up to 74.69% for the principal stresses and up to 68.42% for the principal strains. Significant differences were also found in the displacements obtained in the anteroposterior axes (X) and the vertical or the load axis (Y) of up to 42.03% and 37.47%, respectively. These results allow us to quantify the impact that the choice of the contact type of the foot joints has over its soft tissues and suggest that the way of simulating the movement between bones contributes significantly to the quantitative variation of the structural parameters, affecting thus, the predictions made in the several studies performed with foot numerical models; a contact type that reproduces the natural joint movement is the better option based on this work results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
Analyzing Spinal Cord Stimulation With Different Electrode Configurations: A Numerical Study. Effects of Congestion in Human Lung Investigated Using Dual-Scale Porous Medium Models. Impact of Convulsive Maternal Seizures on Fetus Dynamics. Modeling Fibrous Tissue in Vascular Fluid-Structure Interaction: A Morphology-Based Pipeline and Biomechanical Significance. A Multiscale Mathematical Model for Fetal Gas Transport and Regulatory Systems During Second Half of Pregnancy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1