静电纺PVDF纳米纤维在柔性透明PDMS基板上的高效可控热转印

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-11-12 DOI:10.1109/TNANO.2024.3496487
Ariba Siddiqui;Mitradip Bhattacharjee
{"title":"静电纺PVDF纳米纤维在柔性透明PDMS基板上的高效可控热转印","authors":"Ariba Siddiqui;Mitradip Bhattacharjee","doi":"10.1109/TNANO.2024.3496487","DOIUrl":null,"url":null,"abstract":"The growing interest in sensors and microdevices in different applications has led to the exploration of the most efficient and appropriate synthesis methods for flexible device development. In this direction, nanofibers have gained significant attention. However, in many cases, efficient and controlled transfer of nanofibers plays an important role in various device developments. In this study, thermomechanical i.e., temperature and pressure-induced transfer of poly(vinylidene fluoride) (PVDF) electrospun nanofibers on flexible poly(dimethylsiloxane) (PDMS) substrate has been explored. The average diameter of the transferred nanofibers is 169.78 nm. The d\n<sub>33</sub>\n of PVDF nanofibers was 25 pC/N and F(β) was found to be 80.84%. The synthesized nanofibers have effectively been transferred onto a flexible PDMS substrate with more than 92% retention of optical transparency. It is observed that the transfer of the fibers depends on the applied pressure and adhesion between the materials. Further, it was found that fully cured PDMS substrate heated at 120 °C showed better transfer efficiency (12.544%) with higher stability. The use of PVDF nanofibers along with the inherent flexibility and transparency of PDMS, renders the produced substrate highly promising for the development of low-cost, lightweight, and easily constructed flexible sensors. Moreover, the fabricated nanofibrous mat generated a maximum voltage of 2.78 V on continuous tapping.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"786-793"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Efficient and Controlled Thermomechanical Transfer of Electrospun PVDF Nanofiber on Flexible and Transparent PDMS Substrate\",\"authors\":\"Ariba Siddiqui;Mitradip Bhattacharjee\",\"doi\":\"10.1109/TNANO.2024.3496487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing interest in sensors and microdevices in different applications has led to the exploration of the most efficient and appropriate synthesis methods for flexible device development. In this direction, nanofibers have gained significant attention. However, in many cases, efficient and controlled transfer of nanofibers plays an important role in various device developments. In this study, thermomechanical i.e., temperature and pressure-induced transfer of poly(vinylidene fluoride) (PVDF) electrospun nanofibers on flexible poly(dimethylsiloxane) (PDMS) substrate has been explored. The average diameter of the transferred nanofibers is 169.78 nm. The d\\n<sub>33</sub>\\n of PVDF nanofibers was 25 pC/N and F(β) was found to be 80.84%. The synthesized nanofibers have effectively been transferred onto a flexible PDMS substrate with more than 92% retention of optical transparency. It is observed that the transfer of the fibers depends on the applied pressure and adhesion between the materials. Further, it was found that fully cured PDMS substrate heated at 120 °C showed better transfer efficiency (12.544%) with higher stability. The use of PVDF nanofibers along with the inherent flexibility and transparency of PDMS, renders the produced substrate highly promising for the development of low-cost, lightweight, and easily constructed flexible sensors. Moreover, the fabricated nanofibrous mat generated a maximum voltage of 2.78 V on continuous tapping.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"786-793\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750443/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750443/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对传感器和微器件在不同应用领域的兴趣日益浓厚,人们开始探索最有效、最合适的柔性器件合成方法。在这个方向上,纳米纤维得到了极大的关注。然而,在许多情况下,高效和可控的纳米纤维转移在各种器件的发展中起着重要的作用。在本研究中,探讨了聚偏氟乙烯(PVDF)静电纺丝纳米纤维在柔性聚二甲基硅氧烷(PDMS)衬底上的热机械转移,即温度和压力诱导转移。转移的纳米纤维平均直径为169.78 nm。PVDF纳米纤维的d33为25 pC/N, F(β)为80.84%。合成的纳米纤维已有效地转移到柔性PDMS衬底上,光学透明度保持率超过92%。可以观察到,纤维的转移取决于施加的压力和材料之间的附着力。进一步发现,在120°C加热下完全固化的PDMS基材具有更好的转移效率(12.544%)和更高的稳定性。PVDF纳米纤维的使用以及PDMS固有的柔韧性和透明性,使得所生产的衬底在开发低成本、轻量化和易于构建的柔性传感器方面具有很大的前景。此外,制备的纳米纤维垫在连续攻丝时产生的最大电压为2.78 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Efficient and Controlled Thermomechanical Transfer of Electrospun PVDF Nanofiber on Flexible and Transparent PDMS Substrate
The growing interest in sensors and microdevices in different applications has led to the exploration of the most efficient and appropriate synthesis methods for flexible device development. In this direction, nanofibers have gained significant attention. However, in many cases, efficient and controlled transfer of nanofibers plays an important role in various device developments. In this study, thermomechanical i.e., temperature and pressure-induced transfer of poly(vinylidene fluoride) (PVDF) electrospun nanofibers on flexible poly(dimethylsiloxane) (PDMS) substrate has been explored. The average diameter of the transferred nanofibers is 169.78 nm. The d 33 of PVDF nanofibers was 25 pC/N and F(β) was found to be 80.84%. The synthesized nanofibers have effectively been transferred onto a flexible PDMS substrate with more than 92% retention of optical transparency. It is observed that the transfer of the fibers depends on the applied pressure and adhesion between the materials. Further, it was found that fully cured PDMS substrate heated at 120 °C showed better transfer efficiency (12.544%) with higher stability. The use of PVDF nanofibers along with the inherent flexibility and transparency of PDMS, renders the produced substrate highly promising for the development of low-cost, lightweight, and easily constructed flexible sensors. Moreover, the fabricated nanofibrous mat generated a maximum voltage of 2.78 V on continuous tapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
2024 Index IEEE Transactions on Nanotechnology Vol. 23 On the Dependability of Bidirectional Encoder Representations from Transformers (BERT) to Soft Errors Implications of Dielectric Phases in Ferroelectric HfO$_{2}$ Films on the Performance of Negative Capacitance FETs Improvement of Surface Roughness in SiO2 Thin Films via Deuterium Annealing at 300 °C On the Importance of the Metal Catalyst Layer to the Performance of CNT-Based Supercapacitor Electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1