纤维素诱导的Nrf2激活通过增加BDNF表达改善神经元损伤

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2024-12-05 DOI:10.1007/s11064-024-04290-x
Jeong Heon Gong, Chu-Sook Kim, Jeongmin Park, Soeun Kang, Yumi Jang, Min-Seon Kim, Hun Taeg Chung, Yeonsoo Joe, Rina Yu
{"title":"纤维素诱导的Nrf2激活通过增加BDNF表达改善神经元损伤","authors":"Jeong Heon Gong,&nbsp;Chu-Sook Kim,&nbsp;Jeongmin Park,&nbsp;Soeun Kang,&nbsp;Yumi Jang,&nbsp;Min-Seon Kim,&nbsp;Hun Taeg Chung,&nbsp;Yeonsoo Joe,&nbsp;Rina Yu","doi":"10.1007/s11064-024-04290-x","DOIUrl":null,"url":null,"abstract":"<div><p>Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson’s Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including BDNF, Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP<sup>+</sup>, where it was observed to counteract PA and MPTP/MPP<sup>+</sup>-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.</p><h3>Graphical Abstracts</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11064-024-04290-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Filbertone-Induced Nrf2 Activation Ameliorates Neuronal Damage via Increasing BDNF Expression\",\"authors\":\"Jeong Heon Gong,&nbsp;Chu-Sook Kim,&nbsp;Jeongmin Park,&nbsp;Soeun Kang,&nbsp;Yumi Jang,&nbsp;Min-Seon Kim,&nbsp;Hun Taeg Chung,&nbsp;Yeonsoo Joe,&nbsp;Rina Yu\",\"doi\":\"10.1007/s11064-024-04290-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson’s Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including BDNF, Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP<sup>+</sup>, where it was observed to counteract PA and MPTP/MPP<sup>+</sup>-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.</p><h3>Graphical Abstracts</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11064-024-04290-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-024-04290-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04290-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经营养因子是促进各种神经细胞存活的内源性蛋白质。越来越多的证据表明脑源性神经营养因子(BDNF)在帕金森病(PD)相关的多巴胺能神经毒性中起关键作用。本研究探讨了榛子中发现的一种生物活性化合物filbertone在神经退行性疾病中的治疗潜力,重点研究了其对神经营养因子和核因子红细胞2相关因子2 (Nrf2)信号通路的影响。在我们的研究中,纤维素显著提高了人神经母细胞瘤SH-SY5Y细胞、小鼠星形胶质细胞C8-D1A细胞和小鼠下丘脑mHypoE-N1细胞中神经营养因子的表达,包括BDNF、胶质细胞系衍生神经营养因子(GDNF)和神经生长因子(NGF)。此外,在神经变性模型中,纤维素有效地对抗神经炎症,逆转高脂肪饮食(HFD)诱导的神经营养因子和Nrf2激活的下降。在棕榈酸(PA)和神经毒素MPTP/MPP+诱导的神经毒性模型中,纤维素的神经保护作用得到了进一步验证,观察到它主要通过激活Nrf2和随后上调BDNF和血红素氧合酶-1表达来抵消PA和MPTP/MPP+诱导的细胞活力和神经炎症的降低。Nrf2缺乏使mptp处理小鼠的纤维素的神经保护作用失效。因此,我们的发现表明,纤维素是一种新的治疗神经退行性疾病的药物,通过Nrf2信号通路和上调神经营养因子来增强神经元的恢复力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filbertone-Induced Nrf2 Activation Ameliorates Neuronal Damage via Increasing BDNF Expression

Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson’s Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including BDNF, Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP+, where it was observed to counteract PA and MPTP/MPP+-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.

Graphical Abstracts

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
ALDH2 Overexpression Improves the Blood-brain Barrier and Represses Mitochondrial Dysfunction in Chronic Cerebral Hypoperfusion Through the SIRT1/ROS Axis Regulation of Glycolysis by SMAD5 in Glioma Cells: Implications for Tumor Growth and Apoptosis Transcription Factor CEBPD-Mediated WTAP Facilitates the Stemness, Growth, Migration and Glycolysis of Glioblastoma Stem Like Cells The Interplay Between Endoplasmic Reticulum Stress and Ferroptosis in Neurological Diseases Focusing on Formyl Peptide Receptors after Traumatic Spinal Cord Injury: from Immune Response to Neurogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1