Irene Canavesi, Navin Viswakarma, Boris Epel, Mrignayani Kotecha
{"title":"小鼠体内氧成像和评估皮下植入β细胞替代装置。","authors":"Irene Canavesi, Navin Viswakarma, Boris Epel, Mrignayani Kotecha","doi":"10.1007/s11307-024-01963-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions. Noninvasive in vivo oxygen imaging assessment of implanted BAP devices will provide the necessary feedback and improve the chances of success. Pulse-mode electron paramagnetic resonance (EPR) oxygen imaging (EPROI) using injectable trityl OX071 as the oxygen-sensitive agent is an excellent technique for obtaining partial oxygen pressure (pO<sub>2</sub>) maps in vitro and in vivo. In this study, our goal was to optimize in vivo mouse abdominal EPROI and demonstrate proof-of-concept pO<sub>2</sub> imaging of subcutaneously implanted BAP devices.</p><p><strong>Methods: </strong>All EPROI experiments were performed using a 25 mT EPROI instrument, JIVA-25®. For in vivo EPROI experiments, trityl OX071, a whole-body mouse resonator (∅32 mm × 35 mm), C57BL6 mice, and the inversion recovery electron spin echo (IRESE) pulse sequence were utilized. We investigated the signal amplitude and pO<sub>2</sub> in mouse abdomen region for intravenous (i.v.) and intraperitoneal (i.p.) injection methods with either only a single bolus (B) or bolus plus infusion (BI) for 72.2 mM OX071 and the effect of OX071 concentrations from 18 to 72.2 mM for the i.p.-B injection method. We also investigated the impact of animal respiratory rate on mouse abdominal pO<sub>2</sub>. Finally, we performed proof-of-concept pO<sub>2</sub> imaging of two subcutaneously implanted BAP devices, OxySite and TheraCyte. At the end of the four-week study, the TheraCyte devices were extracted and analyzed for fibrosis, vascular differentiation, and immune cell infiltration.</p><p><strong>Results: </strong>We established that mouse abdominal pO<sub>2</sub> remains stable irrespective of trityl injection methods, concentrations, imaging time, or animal breathing rate. We demonstrate that the i.p.-B and i.p.-BI methods are suitable for EPROI, and i.p.-B method provides higher signal amplitude compared to i.v.-BI and up to 75 min of imaging. An injection with a reduced trityl concentration and higher volume provides higher signal amplitude for i.p.-B method at the beginning. We also highlight the advantage of milder anesthesia for consistent, reliable mouse pO<sub>2</sub> imaging. Finally, we demonstrate that EPROI could provide longitudinal noninvasive oxygen assessment of subcutaneously implanted BAP devices in vivo.</p><p><strong>Conclusions: </strong>In vivo EPROI is a reliable technique for mouse abdominal oxygen imaging and longitudinal assessment of subcutaneously implanted BAP devices noninvasively. This work reports abdominal oxygen imaging in the mouse model and demonstrates its application for the assessment of BAP devices. Even though the application focus of this work was on cell therapy, the techniques developed will have a much broader use in the biomedical field.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"64-77"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vivo Mouse Abdominal Oxygen Imaging And Assessment of Subcutaneously Implanted Beta Cell Replacement Devices.\",\"authors\":\"Irene Canavesi, Navin Viswakarma, Boris Epel, Mrignayani Kotecha\",\"doi\":\"10.1007/s11307-024-01963-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions. Noninvasive in vivo oxygen imaging assessment of implanted BAP devices will provide the necessary feedback and improve the chances of success. Pulse-mode electron paramagnetic resonance (EPR) oxygen imaging (EPROI) using injectable trityl OX071 as the oxygen-sensitive agent is an excellent technique for obtaining partial oxygen pressure (pO<sub>2</sub>) maps in vitro and in vivo. In this study, our goal was to optimize in vivo mouse abdominal EPROI and demonstrate proof-of-concept pO<sub>2</sub> imaging of subcutaneously implanted BAP devices.</p><p><strong>Methods: </strong>All EPROI experiments were performed using a 25 mT EPROI instrument, JIVA-25®. For in vivo EPROI experiments, trityl OX071, a whole-body mouse resonator (∅32 mm × 35 mm), C57BL6 mice, and the inversion recovery electron spin echo (IRESE) pulse sequence were utilized. We investigated the signal amplitude and pO<sub>2</sub> in mouse abdomen region for intravenous (i.v.) and intraperitoneal (i.p.) injection methods with either only a single bolus (B) or bolus plus infusion (BI) for 72.2 mM OX071 and the effect of OX071 concentrations from 18 to 72.2 mM for the i.p.-B injection method. We also investigated the impact of animal respiratory rate on mouse abdominal pO<sub>2</sub>. Finally, we performed proof-of-concept pO<sub>2</sub> imaging of two subcutaneously implanted BAP devices, OxySite and TheraCyte. At the end of the four-week study, the TheraCyte devices were extracted and analyzed for fibrosis, vascular differentiation, and immune cell infiltration.</p><p><strong>Results: </strong>We established that mouse abdominal pO<sub>2</sub> remains stable irrespective of trityl injection methods, concentrations, imaging time, or animal breathing rate. We demonstrate that the i.p.-B and i.p.-BI methods are suitable for EPROI, and i.p.-B method provides higher signal amplitude compared to i.v.-BI and up to 75 min of imaging. An injection with a reduced trityl concentration and higher volume provides higher signal amplitude for i.p.-B method at the beginning. We also highlight the advantage of milder anesthesia for consistent, reliable mouse pO<sub>2</sub> imaging. Finally, we demonstrate that EPROI could provide longitudinal noninvasive oxygen assessment of subcutaneously implanted BAP devices in vivo.</p><p><strong>Conclusions: </strong>In vivo EPROI is a reliable technique for mouse abdominal oxygen imaging and longitudinal assessment of subcutaneously implanted BAP devices noninvasively. This work reports abdominal oxygen imaging in the mouse model and demonstrates its application for the assessment of BAP devices. Even though the application focus of this work was on cell therapy, the techniques developed will have a much broader use in the biomedical field.</p>\",\"PeriodicalId\":18760,\"journal\":{\"name\":\"Molecular Imaging and Biology\",\"volume\":\" \",\"pages\":\"64-77\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11307-024-01963-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-024-01963-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
In Vivo Mouse Abdominal Oxygen Imaging And Assessment of Subcutaneously Implanted Beta Cell Replacement Devices.
Purpose: Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions. Noninvasive in vivo oxygen imaging assessment of implanted BAP devices will provide the necessary feedback and improve the chances of success. Pulse-mode electron paramagnetic resonance (EPR) oxygen imaging (EPROI) using injectable trityl OX071 as the oxygen-sensitive agent is an excellent technique for obtaining partial oxygen pressure (pO2) maps in vitro and in vivo. In this study, our goal was to optimize in vivo mouse abdominal EPROI and demonstrate proof-of-concept pO2 imaging of subcutaneously implanted BAP devices.
Methods: All EPROI experiments were performed using a 25 mT EPROI instrument, JIVA-25®. For in vivo EPROI experiments, trityl OX071, a whole-body mouse resonator (∅32 mm × 35 mm), C57BL6 mice, and the inversion recovery electron spin echo (IRESE) pulse sequence were utilized. We investigated the signal amplitude and pO2 in mouse abdomen region for intravenous (i.v.) and intraperitoneal (i.p.) injection methods with either only a single bolus (B) or bolus plus infusion (BI) for 72.2 mM OX071 and the effect of OX071 concentrations from 18 to 72.2 mM for the i.p.-B injection method. We also investigated the impact of animal respiratory rate on mouse abdominal pO2. Finally, we performed proof-of-concept pO2 imaging of two subcutaneously implanted BAP devices, OxySite and TheraCyte. At the end of the four-week study, the TheraCyte devices were extracted and analyzed for fibrosis, vascular differentiation, and immune cell infiltration.
Results: We established that mouse abdominal pO2 remains stable irrespective of trityl injection methods, concentrations, imaging time, or animal breathing rate. We demonstrate that the i.p.-B and i.p.-BI methods are suitable for EPROI, and i.p.-B method provides higher signal amplitude compared to i.v.-BI and up to 75 min of imaging. An injection with a reduced trityl concentration and higher volume provides higher signal amplitude for i.p.-B method at the beginning. We also highlight the advantage of milder anesthesia for consistent, reliable mouse pO2 imaging. Finally, we demonstrate that EPROI could provide longitudinal noninvasive oxygen assessment of subcutaneously implanted BAP devices in vivo.
Conclusions: In vivo EPROI is a reliable technique for mouse abdominal oxygen imaging and longitudinal assessment of subcutaneously implanted BAP devices noninvasively. This work reports abdominal oxygen imaging in the mouse model and demonstrates its application for the assessment of BAP devices. Even though the application focus of this work was on cell therapy, the techniques developed will have a much broader use in the biomedical field.
期刊介绍:
Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures.
Some areas that are covered are:
Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes.
The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets.
Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display.
Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging.
Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics.
Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations.
Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.