Rizky Mahardhika Subangun, Deni Hardiansyah, Raushan Fikr Ilham Ibrahim, Bisma Barron Patrianesha, Nur Rahmah Hidayati, Ambros J Beer, Gerhard Glatting
{"title":"基于非线性混合效应模型的少时点时间积分活度系数计算:[111In] in - dota - tate在肾脏中的概念验证。","authors":"Rizky Mahardhika Subangun, Deni Hardiansyah, Raushan Fikr Ilham Ibrahim, Bisma Barron Patrianesha, Nur Rahmah Hidayati, Ambros J Beer, Gerhard Glatting","doi":"10.1016/j.ejmp.2024.104865","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study is to investigate the accuracy of few-time-points (FTP) time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using non-linear mixed-effects (NLME) modeling.</p><p><strong>Methods: </strong>Biokinetic data of [<sup>111</sup>In]In-DOTA-TATE in kidneys at T-1 = (2.9 ± 0.6) h, T-2 = (4.6 ± 0.4) h, T-3 = (22.8 ± 1.6) h, T-4 = (46.7 ± 1.7) h, and T-5 = (70.9 ± 1.0) h after injection were obtained from eight patients using planar imaging. The Sum-Of-Exponentials (SOE) function with four parameters was used, which was selected as the best model for the renal biokinetic data of [<sup>111</sup>In]In-DOTA-TATE. The parameters of the SOE function were fitted to the all-time-point data in the NLME framework to derive reference (rTIACs). FTP fits, which consist of all combinations of time points, are done to calculate the estimated TIACs (eTIACs). The accuracy of the FTP-NLME TIACs calculations was assessed by calculating the relative deviations (RDs) and relative root-mean-square errors (RMSEs) between the eTIACs and rTIACs.</p><p><strong>Results: </strong>The lowest (mean ± SD) of RDs for the single-, two-, three-, four-time point FTPs were (0 ± 8) % (T-4), (1 ± 6) % (T-3 and T-4), (3 ± 5) % (T-2, T-3 and T-4), and (0 ± 2) % (T-2, T-3, T-4, and T-5), respectively. The lowest RMSEs for the one-, two-, three-, and four-time point FTPs were 8 % (T-4), 6 % (T-3 and T-4), 5 % (T-2, T-3 and T-4), and 2 % (T-2, T-3, T-4, and T-5), respectively.</p><p><strong>Conclusion: </strong>Our results showed that FTP-NLME in an example of [<sup>111</sup>In]In-DOTA-TATE could lead to a high accuracy of eTIAC across various time points, when incorporating time point T-4 = (46.7 ± 1.7) h.</p>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"129 ","pages":"104865"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-time-points time-integrated activity coefficients calculation using non-linear mixed-effects modeling: Proof of concept for [<sup>111</sup>In]In-DOTA-TATE in kidneys.\",\"authors\":\"Rizky Mahardhika Subangun, Deni Hardiansyah, Raushan Fikr Ilham Ibrahim, Bisma Barron Patrianesha, Nur Rahmah Hidayati, Ambros J Beer, Gerhard Glatting\",\"doi\":\"10.1016/j.ejmp.2024.104865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The purpose of this study is to investigate the accuracy of few-time-points (FTP) time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using non-linear mixed-effects (NLME) modeling.</p><p><strong>Methods: </strong>Biokinetic data of [<sup>111</sup>In]In-DOTA-TATE in kidneys at T-1 = (2.9 ± 0.6) h, T-2 = (4.6 ± 0.4) h, T-3 = (22.8 ± 1.6) h, T-4 = (46.7 ± 1.7) h, and T-5 = (70.9 ± 1.0) h after injection were obtained from eight patients using planar imaging. The Sum-Of-Exponentials (SOE) function with four parameters was used, which was selected as the best model for the renal biokinetic data of [<sup>111</sup>In]In-DOTA-TATE. The parameters of the SOE function were fitted to the all-time-point data in the NLME framework to derive reference (rTIACs). FTP fits, which consist of all combinations of time points, are done to calculate the estimated TIACs (eTIACs). The accuracy of the FTP-NLME TIACs calculations was assessed by calculating the relative deviations (RDs) and relative root-mean-square errors (RMSEs) between the eTIACs and rTIACs.</p><p><strong>Results: </strong>The lowest (mean ± SD) of RDs for the single-, two-, three-, four-time point FTPs were (0 ± 8) % (T-4), (1 ± 6) % (T-3 and T-4), (3 ± 5) % (T-2, T-3 and T-4), and (0 ± 2) % (T-2, T-3, T-4, and T-5), respectively. The lowest RMSEs for the one-, two-, three-, and four-time point FTPs were 8 % (T-4), 6 % (T-3 and T-4), 5 % (T-2, T-3 and T-4), and 2 % (T-2, T-3, T-4, and T-5), respectively.</p><p><strong>Conclusion: </strong>Our results showed that FTP-NLME in an example of [<sup>111</sup>In]In-DOTA-TATE could lead to a high accuracy of eTIAC across various time points, when incorporating time point T-4 = (46.7 ± 1.7) h.</p>\",\"PeriodicalId\":56092,\"journal\":{\"name\":\"Physica Medica-European Journal of Medical Physics\",\"volume\":\"129 \",\"pages\":\"104865\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Medica-European Journal of Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmp.2024.104865\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmp.2024.104865","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Few-time-points time-integrated activity coefficients calculation using non-linear mixed-effects modeling: Proof of concept for [111In]In-DOTA-TATE in kidneys.
Purpose: The purpose of this study is to investigate the accuracy of few-time-points (FTP) time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using non-linear mixed-effects (NLME) modeling.
Methods: Biokinetic data of [111In]In-DOTA-TATE in kidneys at T-1 = (2.9 ± 0.6) h, T-2 = (4.6 ± 0.4) h, T-3 = (22.8 ± 1.6) h, T-4 = (46.7 ± 1.7) h, and T-5 = (70.9 ± 1.0) h after injection were obtained from eight patients using planar imaging. The Sum-Of-Exponentials (SOE) function with four parameters was used, which was selected as the best model for the renal biokinetic data of [111In]In-DOTA-TATE. The parameters of the SOE function were fitted to the all-time-point data in the NLME framework to derive reference (rTIACs). FTP fits, which consist of all combinations of time points, are done to calculate the estimated TIACs (eTIACs). The accuracy of the FTP-NLME TIACs calculations was assessed by calculating the relative deviations (RDs) and relative root-mean-square errors (RMSEs) between the eTIACs and rTIACs.
Results: The lowest (mean ± SD) of RDs for the single-, two-, three-, four-time point FTPs were (0 ± 8) % (T-4), (1 ± 6) % (T-3 and T-4), (3 ± 5) % (T-2, T-3 and T-4), and (0 ± 2) % (T-2, T-3, T-4, and T-5), respectively. The lowest RMSEs for the one-, two-, three-, and four-time point FTPs were 8 % (T-4), 6 % (T-3 and T-4), 5 % (T-2, T-3 and T-4), and 2 % (T-2, T-3, T-4, and T-5), respectively.
Conclusion: Our results showed that FTP-NLME in an example of [111In]In-DOTA-TATE could lead to a high accuracy of eTIAC across various time points, when incorporating time point T-4 = (46.7 ± 1.7) h.
期刊介绍:
Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics:
Medical Imaging
Radiation Therapy
Radiation Protection
Measuring Systems and Signal Processing
Education and training in Medical Physics
Professional issues in Medical Physics.