Abdul Rehman Basharat, Xingzhao Xiong, Tian Xu, Yong Zang, Liangliang Sun, Xiaowen Liu
{"title":"TopDIA:一个自顶向下数据独立获取蛋白质组学的软件工具。","authors":"Abdul Rehman Basharat, Xingzhao Xiong, Tian Xu, Yong Zang, Liangliang Sun, Xiaowen Liu","doi":"10.1021/acs.jproteome.4c00293","DOIUrl":null,"url":null,"abstract":"<p><p>Top-down mass spectrometry is widely used for proteoform identification, characterization, and quantification owing to its ability to analyze intact proteoforms. In the past decade, top-down proteomics has been dominated by top-down data-dependent acquisition mass spectrometry (TD-DDA-MS), and top-down data-independent acquisition mass spectrometry (TD-DIA-MS) has not been well studied. While TD-DIA-MS produces complex multiplexed tandem mass spectrometry (MS/MS) spectra, which are challenging to confidently identify, it selects more precursor ions for MS/MS analysis and has the potential to increase proteoform identifications compared with TD-DDA-MS. Here we present TopDIA, the first software tool for proteoform identification by TD-DIA-MS. It generates demultiplexed pseudo MS/MS spectra from TD-DIA-MS data and then searches the pseudo MS/MS spectra against a protein sequence database for proteoform identification. We compared the performance of TD-DDA-MS and TD-DIA-MS using <i>Escherichia coli</i> K-12 MG1655 cells and demonstrated that TD-DIA-MS with TopDIA increased proteoform and protein identifications compared with TD-DDA-MS.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"55-64"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705214/pdf/","citationCount":"0","resultStr":"{\"title\":\"TopDIA: A Software Tool for Top-Down Data-Independent Acquisition Proteomics.\",\"authors\":\"Abdul Rehman Basharat, Xingzhao Xiong, Tian Xu, Yong Zang, Liangliang Sun, Xiaowen Liu\",\"doi\":\"10.1021/acs.jproteome.4c00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Top-down mass spectrometry is widely used for proteoform identification, characterization, and quantification owing to its ability to analyze intact proteoforms. In the past decade, top-down proteomics has been dominated by top-down data-dependent acquisition mass spectrometry (TD-DDA-MS), and top-down data-independent acquisition mass spectrometry (TD-DIA-MS) has not been well studied. While TD-DIA-MS produces complex multiplexed tandem mass spectrometry (MS/MS) spectra, which are challenging to confidently identify, it selects more precursor ions for MS/MS analysis and has the potential to increase proteoform identifications compared with TD-DDA-MS. Here we present TopDIA, the first software tool for proteoform identification by TD-DIA-MS. It generates demultiplexed pseudo MS/MS spectra from TD-DIA-MS data and then searches the pseudo MS/MS spectra against a protein sequence database for proteoform identification. We compared the performance of TD-DDA-MS and TD-DIA-MS using <i>Escherichia coli</i> K-12 MG1655 cells and demonstrated that TD-DIA-MS with TopDIA increased proteoform and protein identifications compared with TD-DDA-MS.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"55-64\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00293\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00293","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
TopDIA: A Software Tool for Top-Down Data-Independent Acquisition Proteomics.
Top-down mass spectrometry is widely used for proteoform identification, characterization, and quantification owing to its ability to analyze intact proteoforms. In the past decade, top-down proteomics has been dominated by top-down data-dependent acquisition mass spectrometry (TD-DDA-MS), and top-down data-independent acquisition mass spectrometry (TD-DIA-MS) has not been well studied. While TD-DIA-MS produces complex multiplexed tandem mass spectrometry (MS/MS) spectra, which are challenging to confidently identify, it selects more precursor ions for MS/MS analysis and has the potential to increase proteoform identifications compared with TD-DDA-MS. Here we present TopDIA, the first software tool for proteoform identification by TD-DIA-MS. It generates demultiplexed pseudo MS/MS spectra from TD-DIA-MS data and then searches the pseudo MS/MS spectra against a protein sequence database for proteoform identification. We compared the performance of TD-DDA-MS and TD-DIA-MS using Escherichia coli K-12 MG1655 cells and demonstrated that TD-DIA-MS with TopDIA increased proteoform and protein identifications compared with TD-DDA-MS.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".