{"title":"开启阿尔茨海默病的早期检测:基于纳米材料的光学传感器的新兴作用。","authors":"Chun-Hsien Chen, Hsin-Hua Liang, Chun-Chi Wang, Yi-Ting Yang, Yi-Hui Lin, Yen-Ling Chen","doi":"10.38212/2224-6614.3520","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder that affects millions of individuals worldwide. Researchers have conducted numerous studies to find accurate biomarkers for early AD diagnosis and develop more effective treatments. The main pathological hallmarks of AD are amyloid beta and Tau proteins. Other biomarkers, such as DNA, RNA, and proteins, can also be helpful in early AD diagnosis. To diagnose and treat AD promptly, it is essential to accurately measure the concentration of biomarkers in the cerebrospinal fluid or blood. However, due to the low concentrations of these biomarkers in the body, highly sensitive analytical techniques are required. To date, sensors have become increasingly important due to their high sensitivity, swift detection, and adaptable manipulation features. These qualities make them an excellent substitute for conventional instruments. Nanomaterials are commonly employed in sensors to amplify signals and improve sensitivity. This review paper summarized the integration of nanomaterials in optical sensor systems, including colorimetric, fluorescent, and surface-enhanced Raman scattering sensors for AD biomarkers detection.</p>","PeriodicalId":358,"journal":{"name":"Journal of Food and Drug Analysis","volume":"32 3","pages":"296-324"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unlocking early detection of Alzheimer's disease: The emerging role of nanomaterial-based optical sensors.\",\"authors\":\"Chun-Hsien Chen, Hsin-Hua Liang, Chun-Chi Wang, Yi-Ting Yang, Yi-Hui Lin, Yen-Ling Chen\",\"doi\":\"10.38212/2224-6614.3520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder that affects millions of individuals worldwide. Researchers have conducted numerous studies to find accurate biomarkers for early AD diagnosis and develop more effective treatments. The main pathological hallmarks of AD are amyloid beta and Tau proteins. Other biomarkers, such as DNA, RNA, and proteins, can also be helpful in early AD diagnosis. To diagnose and treat AD promptly, it is essential to accurately measure the concentration of biomarkers in the cerebrospinal fluid or blood. However, due to the low concentrations of these biomarkers in the body, highly sensitive analytical techniques are required. To date, sensors have become increasingly important due to their high sensitivity, swift detection, and adaptable manipulation features. These qualities make them an excellent substitute for conventional instruments. Nanomaterials are commonly employed in sensors to amplify signals and improve sensitivity. This review paper summarized the integration of nanomaterials in optical sensor systems, including colorimetric, fluorescent, and surface-enhanced Raman scattering sensors for AD biomarkers detection.</p>\",\"PeriodicalId\":358,\"journal\":{\"name\":\"Journal of Food and Drug Analysis\",\"volume\":\"32 3\",\"pages\":\"296-324\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food and Drug Analysis\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.38212/2224-6614.3520\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food and Drug Analysis","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.38212/2224-6614.3520","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Unlocking early detection of Alzheimer's disease: The emerging role of nanomaterial-based optical sensors.
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder that affects millions of individuals worldwide. Researchers have conducted numerous studies to find accurate biomarkers for early AD diagnosis and develop more effective treatments. The main pathological hallmarks of AD are amyloid beta and Tau proteins. Other biomarkers, such as DNA, RNA, and proteins, can also be helpful in early AD diagnosis. To diagnose and treat AD promptly, it is essential to accurately measure the concentration of biomarkers in the cerebrospinal fluid or blood. However, due to the low concentrations of these biomarkers in the body, highly sensitive analytical techniques are required. To date, sensors have become increasingly important due to their high sensitivity, swift detection, and adaptable manipulation features. These qualities make them an excellent substitute for conventional instruments. Nanomaterials are commonly employed in sensors to amplify signals and improve sensitivity. This review paper summarized the integration of nanomaterials in optical sensor systems, including colorimetric, fluorescent, and surface-enhanced Raman scattering sensors for AD biomarkers detection.
期刊介绍:
The journal aims to provide an international platform for scientists, researchers and academicians to promote, share and discuss new findings, current issues, and developments in the different areas of food and drug analysis.
The scope of the Journal includes analytical methodologies and biological activities in relation to food, drugs, cosmetics and traditional Chinese medicine, as well as related disciplines of topical interest to public health professionals.