含硼介孔纳米管电还原氮制氨的研究。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-12-05 DOI:10.1088/1361-6528/ad9aad
Guanghui Yang, Jiale Song, Xinmiao Li, Kai Deng, Hongjie Yu, You Xu, Hongjing Wang, Ziqiang Wang, Liang Wang
{"title":"含硼介孔纳米管电还原氮制氨的研究。","authors":"Guanghui Yang, Jiale Song, Xinmiao Li, Kai Deng, Hongjie Yu, You Xu, Hongjing Wang, Ziqiang Wang, Liang Wang","doi":"10.1088/1361-6528/ad9aad","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic nitrogen reduction reaction (NRR) is a prospective tactics for ammonia synthesis. However, the development of highly active NRR electrocatalysts is still challenging owing to the difficult activation of nitrogen and competitive hydrogen evolution reaction (HER). Here, we synthesized boron-doped AuRh mesoporous nanotubes (B-AuRh MNTs) via dual-template method coupled with boron doping. The mesoporous nanotube structure has high specific surface area and excellent surface permeability. Thereby, the B-AuRh MNTs exhibit NH3 yield of 13.3 μg h-1 mg-1cat and Faraday efficiency of 22.5% under 0.1 M Na2SO4. The doping of boron with weak hydrogen adsorption can generate electronic effect, thus stimulating the activation of N2 molecules and effectively inhibiting HER. This study proposes a universal method for the preparation of boron-doped Pd-based catalysts, which is beneficial to improve the NRR performance.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron modification of AuRh mesoporous nanotubes for electro-reduction of nitrogen to ammonia.\",\"authors\":\"Guanghui Yang, Jiale Song, Xinmiao Li, Kai Deng, Hongjie Yu, You Xu, Hongjing Wang, Ziqiang Wang, Liang Wang\",\"doi\":\"10.1088/1361-6528/ad9aad\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrocatalytic nitrogen reduction reaction (NRR) is a prospective tactics for ammonia synthesis. However, the development of highly active NRR electrocatalysts is still challenging owing to the difficult activation of nitrogen and competitive hydrogen evolution reaction (HER). Here, we synthesized boron-doped AuRh mesoporous nanotubes (B-AuRh MNTs) via dual-template method coupled with boron doping. The mesoporous nanotube structure has high specific surface area and excellent surface permeability. Thereby, the B-AuRh MNTs exhibit NH3 yield of 13.3 μg h-1 mg-1cat and Faraday efficiency of 22.5% under 0.1 M Na2SO4. The doping of boron with weak hydrogen adsorption can generate electronic effect, thus stimulating the activation of N2 molecules and effectively inhibiting HER. This study proposes a universal method for the preparation of boron-doped Pd-based catalysts, which is beneficial to improve the NRR performance.&#xD.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad9aad\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9aad","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化氮还原反应(NRR)是一种很有前途的合成氨技术。然而,由于氮的难活化和竞争性析氢反应(HER)的存在,高活性NRR电催化剂的开发仍然具有挑战性。本文采用双模板法结合硼掺杂合成了硼掺杂的AuRh介孔纳米管(B-AuRh MNTs)。介孔纳米管结构具有较高的比表面积和优良的表面渗透性。因此,在0.1 M Na2SO4下,B-AuRh MNTs的NH3产率为13.3 μg h-1 mg-1cat,法拉第效率为22.5%。弱氢吸附硼的掺杂可以产生电子效应,从而刺激N2分子的活化,有效抑制HER。本研究提出了一种制备掺硼pd基催化剂的通用方法,有利于提高NRR性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boron modification of AuRh mesoporous nanotubes for electro-reduction of nitrogen to ammonia.

Electrocatalytic nitrogen reduction reaction (NRR) is a prospective tactics for ammonia synthesis. However, the development of highly active NRR electrocatalysts is still challenging owing to the difficult activation of nitrogen and competitive hydrogen evolution reaction (HER). Here, we synthesized boron-doped AuRh mesoporous nanotubes (B-AuRh MNTs) via dual-template method coupled with boron doping. The mesoporous nanotube structure has high specific surface area and excellent surface permeability. Thereby, the B-AuRh MNTs exhibit NH3 yield of 13.3 μg h-1 mg-1cat and Faraday efficiency of 22.5% under 0.1 M Na2SO4. The doping of boron with weak hydrogen adsorption can generate electronic effect, thus stimulating the activation of N2 molecules and effectively inhibiting HER. This study proposes a universal method for the preparation of boron-doped Pd-based catalysts, which is beneficial to improve the NRR performance. .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Combined feature of enhanced stability and multi-level switching observed in TiN/Ta2O5/Ag-NPs/ITO/PET structure. Infrared photoresponse of GeSiSn p-i-n photodiodes based on quantum dots, quantum wells, pseudomorphic and relaxed layers. Spontaneous heat current and ultra-high thermal rectification in asymmetric graphene: a molecular dynamics simulation. Direct observations of nucleation and early-stage growth of Au-catalyzed GaAs nanowires on Si(111). Bimetallic AuPd alloy nanoparticles on TiO₂ nanotube arrays: a highly efficient photocatalyst for hydrogen generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1