电子束氟化CVD石墨烯稳定性及NH3吸附掺杂效应的原位XPS研究。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-12-19 DOI:10.1088/1361-6528/ad9ab0
V Malesys, T Duan, E Denys, Hu Li, K Leifer, L Simon
{"title":"电子束氟化CVD石墨烯稳定性及NH3吸附掺杂效应的原位XPS研究。","authors":"V Malesys, T Duan, E Denys, Hu Li, K Leifer, L Simon","doi":"10.1088/1361-6528/ad9ab0","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene exhibits promise in gas detection applications despite its limited selectivity. Functionalization with fluorine atoms offers a potential solution to enhance selectivity, particularly towards ammonia (NH+) molecules. This article presents a study on electron-beam fluorinated graphene (FG) and its integration into gas sensor platforms. We begin by characterizing the thermal stability of fluorographene, demonstrating its resilience up to 450 °C. Subsequently, we investigate the nature of NH<sub>3</sub>interaction with FG, exploring distinct adsorption energies to address preferential adsorption concerns. Notably, we introduce an innovative approach utilizing x-ray photoelectron spectroscopy cartography for simultaneous analysis of fluorinated and pristine graphene, offering enhanced insights into their properties and interactions. This study contributes to advancing the understanding and application of FG in gas sensing technologies.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-beam fluorinated CVD graphene:<i>in-situ</i>XPS study on stability and NH<sub>3</sub>adsorption doping effect.\",\"authors\":\"V Malesys, T Duan, E Denys, Hu Li, K Leifer, L Simon\",\"doi\":\"10.1088/1361-6528/ad9ab0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graphene exhibits promise in gas detection applications despite its limited selectivity. Functionalization with fluorine atoms offers a potential solution to enhance selectivity, particularly towards ammonia (NH+) molecules. This article presents a study on electron-beam fluorinated graphene (FG) and its integration into gas sensor platforms. We begin by characterizing the thermal stability of fluorographene, demonstrating its resilience up to 450 °C. Subsequently, we investigate the nature of NH<sub>3</sub>interaction with FG, exploring distinct adsorption energies to address preferential adsorption concerns. Notably, we introduce an innovative approach utilizing x-ray photoelectron spectroscopy cartography for simultaneous analysis of fluorinated and pristine graphene, offering enhanced insights into their properties and interactions. This study contributes to advancing the understanding and application of FG in gas sensing technologies.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad9ab0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9ab0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管石墨烯的选择性有限,但它在气体检测应用中表现出了前景。氟原子功能化提供了一个潜在的解决方案,以提高选择性,特别是对氨(NH+)分子。本文介绍了电子束氟化石墨烯及其在气体传感器平台中的集成研究。我们首先描述了氟石墨烯的热稳定性,展示了其高达450°C的弹性。随后,我们研究了NH3与FG相互作用的性质,探索不同的吸附能来解决优先吸附问题。值得注意的是,我们引入了一种利用XPS制图法同时分析氟化石墨烯和原始石墨烯的创新方法,从而增强了对其性质和相互作用的了解。本研究有助于推进氟化石墨烯在气敏技术中的理解和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E-beam fluorinated CVD graphene:in-situXPS study on stability and NH3adsorption doping effect.

Graphene exhibits promise in gas detection applications despite its limited selectivity. Functionalization with fluorine atoms offers a potential solution to enhance selectivity, particularly towards ammonia (NH+) molecules. This article presents a study on electron-beam fluorinated graphene (FG) and its integration into gas sensor platforms. We begin by characterizing the thermal stability of fluorographene, demonstrating its resilience up to 450 °C. Subsequently, we investigate the nature of NH3interaction with FG, exploring distinct adsorption energies to address preferential adsorption concerns. Notably, we introduce an innovative approach utilizing x-ray photoelectron spectroscopy cartography for simultaneous analysis of fluorinated and pristine graphene, offering enhanced insights into their properties and interactions. This study contributes to advancing the understanding and application of FG in gas sensing technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Combined feature of enhanced stability and multi-level switching observed in TiN/Ta2O5/Ag-NPs/ITO/PET structure. Infrared photoresponse of GeSiSn p-i-n photodiodes based on quantum dots, quantum wells, pseudomorphic and relaxed layers. Spontaneous heat current and ultra-high thermal rectification in asymmetric graphene: a molecular dynamics simulation. Direct observations of nucleation and early-stage growth of Au-catalyzed GaAs nanowires on Si(111). Bimetallic AuPd alloy nanoparticles on TiO₂ nanotube arrays: a highly efficient photocatalyst for hydrogen generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1