诱导多能干细胞衍生造血干细胞高效嵌合的抗脆性处理。

IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Stem Cell Reviews and Reports Pub Date : 2024-12-05 DOI:10.1007/s12015-024-10828-x
Daekee Kwon, Taewook Lee, Mijung Han, So-Woon Han, Kyung-Sun Kang
{"title":"诱导多能干细胞衍生造血干细胞高效嵌合的抗脆性处理。","authors":"Daekee Kwon, Taewook Lee, Mijung Han, So-Woon Han, Kyung-Sun Kang","doi":"10.1007/s12015-024-10828-x","DOIUrl":null,"url":null,"abstract":"<p><p>Engraftable hematopoietic stem cells (HSC) can be obtained from bone marrow, umbilical cord blood, and peripheral blood (PB). However, a major bottleneck in HSC transplantation is identifying an unrelated donor that completely matches the human leukocyte antigen type of the recipient. This issue can be resolved by producing patient-specific stem cells. The purpose of this study was to identify the conditions under which induced pluripotent stem cells (iPSC)-derived hematopoietic stem cells (iHSC) exhibit high efficiency. Because HSC are fragile and vulnerable to damage, this study was performed under the hypothesis that the engraftment rate could be increased by antifragile treatment. Antioxidant ginsenoside Rg1 was used to differentiate from iPSC to iHSC, and differentiated iHSC was intravenously injected into Balb/c nude mouse conditioned with diverse concentrations of busulfan. Engraftment was verified by the presence of human-specific markers in the PB at 2 and 8 weeks post iHSC transplantation. iHSC differentiated by incorporating 1 µM of Rg1 demonstrated high colony forming efficiency in vitro. Additionally, high efficiency engraftment occurred immediately after iHSC were transplanted into mice conditioned with high dose busulfan at a dosage of 125 mg/kg or higher. In this study, high-quality iHSC manufacturing and transplantation conditions capable of high efficiency engraftment in vivo were established. Hereafter, this method of producing HSC using patient-specific iPSC will become the fourth new source of HSC. Additionally, if gene-editing technology is applied, the scope of its application can be expanded to diverse infectious diseases.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifragile Treatment for Efficient Chimerism of Induced Pluripotent Stem Cells Derived Hematopoietic Stem Cells.\",\"authors\":\"Daekee Kwon, Taewook Lee, Mijung Han, So-Woon Han, Kyung-Sun Kang\",\"doi\":\"10.1007/s12015-024-10828-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Engraftable hematopoietic stem cells (HSC) can be obtained from bone marrow, umbilical cord blood, and peripheral blood (PB). However, a major bottleneck in HSC transplantation is identifying an unrelated donor that completely matches the human leukocyte antigen type of the recipient. This issue can be resolved by producing patient-specific stem cells. The purpose of this study was to identify the conditions under which induced pluripotent stem cells (iPSC)-derived hematopoietic stem cells (iHSC) exhibit high efficiency. Because HSC are fragile and vulnerable to damage, this study was performed under the hypothesis that the engraftment rate could be increased by antifragile treatment. Antioxidant ginsenoside Rg1 was used to differentiate from iPSC to iHSC, and differentiated iHSC was intravenously injected into Balb/c nude mouse conditioned with diverse concentrations of busulfan. Engraftment was verified by the presence of human-specific markers in the PB at 2 and 8 weeks post iHSC transplantation. iHSC differentiated by incorporating 1 µM of Rg1 demonstrated high colony forming efficiency in vitro. Additionally, high efficiency engraftment occurred immediately after iHSC were transplanted into mice conditioned with high dose busulfan at a dosage of 125 mg/kg or higher. In this study, high-quality iHSC manufacturing and transplantation conditions capable of high efficiency engraftment in vivo were established. Hereafter, this method of producing HSC using patient-specific iPSC will become the fourth new source of HSC. Additionally, if gene-editing technology is applied, the scope of its application can be expanded to diverse infectious diseases.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10828-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10828-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

可移植的造血干细胞(HSC)可以从骨髓、脐带血和外周血(PB)中获得。然而,HSC移植的一个主要瓶颈是寻找与受体的人类白细胞抗原类型完全匹配的非亲属供体。这个问题可以通过制造患者特异性干细胞来解决。本研究的目的是确定诱导多能干细胞(iPSC)衍生的造血干细胞(iHSC)表现出高效率的条件。由于HSC是脆弱的,容易受到损伤,本研究是在假设抗脆弱处理可以提高移植率的前提下进行的。利用抗氧化人参皂苷Rg1诱导iPSC向iHSC分化,并将分化后的iHSC静脉注射到Balb/c裸鼠体内。在iHSC移植后2周和8周,通过在PB中存在人类特异性标记物来证实移植。加入1µM Rg1分化的iHSC体外集落形成效率高。此外,将iHSC移植到剂量为125 mg/kg或更高的高剂量busulfan的小鼠体内后,立即发生了高效率的植入。本研究建立了高质量的iHSC制造和能够高效植入体内的移植条件。今后,这种利用患者特异性iPSC生产造血干细胞的方法将成为造血干细胞的第四种新来源。此外,如果应用基因编辑技术,其应用范围可以扩大到各种传染病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antifragile Treatment for Efficient Chimerism of Induced Pluripotent Stem Cells Derived Hematopoietic Stem Cells.

Engraftable hematopoietic stem cells (HSC) can be obtained from bone marrow, umbilical cord blood, and peripheral blood (PB). However, a major bottleneck in HSC transplantation is identifying an unrelated donor that completely matches the human leukocyte antigen type of the recipient. This issue can be resolved by producing patient-specific stem cells. The purpose of this study was to identify the conditions under which induced pluripotent stem cells (iPSC)-derived hematopoietic stem cells (iHSC) exhibit high efficiency. Because HSC are fragile and vulnerable to damage, this study was performed under the hypothesis that the engraftment rate could be increased by antifragile treatment. Antioxidant ginsenoside Rg1 was used to differentiate from iPSC to iHSC, and differentiated iHSC was intravenously injected into Balb/c nude mouse conditioned with diverse concentrations of busulfan. Engraftment was verified by the presence of human-specific markers in the PB at 2 and 8 weeks post iHSC transplantation. iHSC differentiated by incorporating 1 µM of Rg1 demonstrated high colony forming efficiency in vitro. Additionally, high efficiency engraftment occurred immediately after iHSC were transplanted into mice conditioned with high dose busulfan at a dosage of 125 mg/kg or higher. In this study, high-quality iHSC manufacturing and transplantation conditions capable of high efficiency engraftment in vivo were established. Hereafter, this method of producing HSC using patient-specific iPSC will become the fourth new source of HSC. Additionally, if gene-editing technology is applied, the scope of its application can be expanded to diverse infectious diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
期刊最新文献
hUC-MSCs Prevent Acute High-Altitude Injury through Apoe/Pdgf-b/p-Erk1/2 Axis in Mice. Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells. Empagliflozin Reduces High Glucose-Induced Cardiomyopathy in hiPSC-Derived Cardiomyocytes : Glucose-induced Lipotoxicity in hiPSC-Derived Cardiomyocytes. Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead. Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1