{"title":"回顾递归神经网络中长期依赖关系的学习问题。","authors":"Liam Johnston, Vivak Patel, Yumian Cui, Prasanna Balaprakash","doi":"10.1016/j.neunet.2024.106887","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent neural networks (RNNs) are an important class of models for learning sequential behavior. However, training RNNs to learn long-term dependencies is a tremendously difficult task, and this difficulty is widely attributed to the vanishing and exploding gradient (VEG) problem. Since it was first characterized 30 years ago, the belief that if VEG occurs during optimization then RNNs learn long-term dependencies poorly has become a central tenet in the RNN literature and has been steadily cited as motivation for a wide variety of research advancements. In this work, we revisit and interrogate this belief using a large factorial experiment where more than 40,000 RNNs were trained, and provide evidence contradicting this belief. Motivated by these findings, we re-examine the original discussion that analyzed latching behavior in RNNs by way of hyperbolic attractors, and ultimately demonstrate that these dynamics do not fully capture the learned characteristics of RNNs. Our findings suggest that these models are fully capable of learning dynamics that do not correspond to hyperbolic attractors, and that the choice of hyper-parameters, namely learning rate, has a substantial impact on the likelihood of whether an RNN will be able to learn long-term dependencies.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106887"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the problem of learning long-term dependencies in recurrent neural networks.\",\"authors\":\"Liam Johnston, Vivak Patel, Yumian Cui, Prasanna Balaprakash\",\"doi\":\"10.1016/j.neunet.2024.106887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recurrent neural networks (RNNs) are an important class of models for learning sequential behavior. However, training RNNs to learn long-term dependencies is a tremendously difficult task, and this difficulty is widely attributed to the vanishing and exploding gradient (VEG) problem. Since it was first characterized 30 years ago, the belief that if VEG occurs during optimization then RNNs learn long-term dependencies poorly has become a central tenet in the RNN literature and has been steadily cited as motivation for a wide variety of research advancements. In this work, we revisit and interrogate this belief using a large factorial experiment where more than 40,000 RNNs were trained, and provide evidence contradicting this belief. Motivated by these findings, we re-examine the original discussion that analyzed latching behavior in RNNs by way of hyperbolic attractors, and ultimately demonstrate that these dynamics do not fully capture the learned characteristics of RNNs. Our findings suggest that these models are fully capable of learning dynamics that do not correspond to hyperbolic attractors, and that the choice of hyper-parameters, namely learning rate, has a substantial impact on the likelihood of whether an RNN will be able to learn long-term dependencies.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106887\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106887\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106887","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Revisiting the problem of learning long-term dependencies in recurrent neural networks.
Recurrent neural networks (RNNs) are an important class of models for learning sequential behavior. However, training RNNs to learn long-term dependencies is a tremendously difficult task, and this difficulty is widely attributed to the vanishing and exploding gradient (VEG) problem. Since it was first characterized 30 years ago, the belief that if VEG occurs during optimization then RNNs learn long-term dependencies poorly has become a central tenet in the RNN literature and has been steadily cited as motivation for a wide variety of research advancements. In this work, we revisit and interrogate this belief using a large factorial experiment where more than 40,000 RNNs were trained, and provide evidence contradicting this belief. Motivated by these findings, we re-examine the original discussion that analyzed latching behavior in RNNs by way of hyperbolic attractors, and ultimately demonstrate that these dynamics do not fully capture the learned characteristics of RNNs. Our findings suggest that these models are fully capable of learning dynamics that do not correspond to hyperbolic attractors, and that the choice of hyper-parameters, namely learning rate, has a substantial impact on the likelihood of whether an RNN will be able to learn long-term dependencies.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.