利用同位素支持的质量平衡评估现有的陆地表面模型

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2024-12-07 DOI:10.1029/2024wr037530
Marja Haagsma, Catherine E. Finkenbiner, David C. Noone, Gabriel J. Bowen, Christopher Still, Richard P. Fiorella, Stephen P. Good
{"title":"利用同位素支持的质量平衡评估现有的陆地表面模型","authors":"Marja Haagsma, Catherine E. Finkenbiner, David C. Noone, Gabriel J. Bowen, Christopher Still, Richard P. Fiorella, Stephen P. Good","doi":"10.1029/2024wr037530","DOIUrl":null,"url":null,"abstract":"Land surface models (LSMs) play a crucial role in elucidating water and carbon cycles by simulating processes such as plant transpiration and evaporation from bare soil, yet calibration often relies on comparing LSM outputs of landscape total evapotranspiration (<i>ET</i>) and discharge with measured bulk fluxes. Discrepancies in partitioning into component fluxes predicted by various LSMs have been noted, prompting the need for improved evaluation methods. Stable water isotopes serve as effective tracers of component hydrologic fluxes, but data and model integration challenges have hindered their widespread application. Leveraging National Ecological Observation Network measurements of water isotope ratios at 16 US sites over 3 years combined with LSM-modeled fluxes, we employed an isotope-enabled mass balance framework to simulate <i>ET</i> isotope values (<i>δET</i>) within three operational LSMs (Mosaic, Noah, and VIC) to evaluate their partitioning. Models simulating <i>δET</i> values consistent with observations were deemed more reflective of water cycling in these ecosystems. Mosaic exhibited the best overall performance (Kling-Gupta Efficiency of 0.28). For both Mosaic and Noah there were robust correlations between bare soil evaporation fraction and error (negative) as well as transpiration fraction and error (positive). We found the point at which errors are smallest (<i>x</i>-intercept of the multi-site regression) is at a higher transpiration fraction than is currently specified in the models. Which means that transpiration fraction is underestimated on average. Stable isotope tracers offer an additional tool for model evaluation and identifying areas for improvement, potentially enhancing LSM simulations and our understanding of land-surface hydrologic processes.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"84 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using an Isotope Enabled Mass Balance to Evaluate Existing Land Surface Models\",\"authors\":\"Marja Haagsma, Catherine E. Finkenbiner, David C. Noone, Gabriel J. Bowen, Christopher Still, Richard P. Fiorella, Stephen P. Good\",\"doi\":\"10.1029/2024wr037530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land surface models (LSMs) play a crucial role in elucidating water and carbon cycles by simulating processes such as plant transpiration and evaporation from bare soil, yet calibration often relies on comparing LSM outputs of landscape total evapotranspiration (<i>ET</i>) and discharge with measured bulk fluxes. Discrepancies in partitioning into component fluxes predicted by various LSMs have been noted, prompting the need for improved evaluation methods. Stable water isotopes serve as effective tracers of component hydrologic fluxes, but data and model integration challenges have hindered their widespread application. Leveraging National Ecological Observation Network measurements of water isotope ratios at 16 US sites over 3 years combined with LSM-modeled fluxes, we employed an isotope-enabled mass balance framework to simulate <i>ET</i> isotope values (<i>δET</i>) within three operational LSMs (Mosaic, Noah, and VIC) to evaluate their partitioning. Models simulating <i>δET</i> values consistent with observations were deemed more reflective of water cycling in these ecosystems. Mosaic exhibited the best overall performance (Kling-Gupta Efficiency of 0.28). For both Mosaic and Noah there were robust correlations between bare soil evaporation fraction and error (negative) as well as transpiration fraction and error (positive). We found the point at which errors are smallest (<i>x</i>-intercept of the multi-site regression) is at a higher transpiration fraction than is currently specified in the models. Which means that transpiration fraction is underestimated on average. Stable isotope tracers offer an additional tool for model evaluation and identifying areas for improvement, potentially enhancing LSM simulations and our understanding of land-surface hydrologic processes.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr037530\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037530","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

陆地表面模型(LSMs)通过模拟植物蒸腾和裸土蒸发等过程,在阐明水和碳循环方面发挥着至关重要的作用,但校准往往依赖于将LSM的景观总蒸散发(ET)和排放量输出与测量的总体通量进行比较。已经注意到各种lsm预测的组分通量划分的差异,提示需要改进评估方法。稳定水同位素是水文组分通量的有效示踪剂,但数据和模型集成方面的挑战阻碍了其广泛应用。利用国家生态观测网3年来在美国16个站点的水同位素比率测量数据,结合lsm模拟的通量,我们采用了同位素支持的质量平衡框架来模拟三个运行的lsm (Mosaic, Noah和VIC)中的ET同位素值(δET),以评估它们的分配。模拟与观测值一致的δET值的模式被认为更能反映这些生态系统的水循环。马赛克的综合性能最好,克林-古普塔效率为0.28。对于Mosaic和Noah,裸土蒸发分数和误差(负)以及蒸腾分数和误差(正)之间存在显著相关。我们发现误差最小的点(多点回归的x截距)比目前模型中指定的蒸腾分数更高。这意味着蒸腾作用平均被低估了。稳定同位素示踪剂为模型评估和确定需要改进的领域提供了一个额外的工具,可能会增强LSM模拟和我们对陆地表面水文过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using an Isotope Enabled Mass Balance to Evaluate Existing Land Surface Models
Land surface models (LSMs) play a crucial role in elucidating water and carbon cycles by simulating processes such as plant transpiration and evaporation from bare soil, yet calibration often relies on comparing LSM outputs of landscape total evapotranspiration (ET) and discharge with measured bulk fluxes. Discrepancies in partitioning into component fluxes predicted by various LSMs have been noted, prompting the need for improved evaluation methods. Stable water isotopes serve as effective tracers of component hydrologic fluxes, but data and model integration challenges have hindered their widespread application. Leveraging National Ecological Observation Network measurements of water isotope ratios at 16 US sites over 3 years combined with LSM-modeled fluxes, we employed an isotope-enabled mass balance framework to simulate ET isotope values (δET) within three operational LSMs (Mosaic, Noah, and VIC) to evaluate their partitioning. Models simulating δET values consistent with observations were deemed more reflective of water cycling in these ecosystems. Mosaic exhibited the best overall performance (Kling-Gupta Efficiency of 0.28). For both Mosaic and Noah there were robust correlations between bare soil evaporation fraction and error (negative) as well as transpiration fraction and error (positive). We found the point at which errors are smallest (x-intercept of the multi-site regression) is at a higher transpiration fraction than is currently specified in the models. Which means that transpiration fraction is underestimated on average. Stable isotope tracers offer an additional tool for model evaluation and identifying areas for improvement, potentially enhancing LSM simulations and our understanding of land-surface hydrologic processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Unraveling the Distinct Roles of Snowmelt and Glacier-Melt on Agricultural Water Availability: A Novel Indicator and Its Application in a Glacierized Basin of China’s Arid Region Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA Control of Groundwater-Lake Interaction Zone Structure on Spatial Variability of Lacustrine Groundwater Discharge in Oxbow Lake A Cluster-Based Data Assimilation Approach to Generate New Daily Gridded Time Series Precipitation Data in the Himalayan River Basins Physics-Guided Deep Learning Model for Daily Groundwater Table Maps Estimation Using Passive Surface-Wave Dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1