油棕空果束水解产物中嗜盐菌玻利维盐单胞菌合成多羟基丁酸盐。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2025-01-01 Epub Date: 2024-12-06 DOI:10.1002/bip.23644
Diana Catalina Arcila-Echavarría, Thelmo Alejandro Lu-Chau, Natalia Andrea Gómez-Vanegas
{"title":"油棕空果束水解产物中嗜盐菌玻利维盐单胞菌合成多羟基丁酸盐。","authors":"Diana Catalina Arcila-Echavarría, Thelmo Alejandro Lu-Chau, Natalia Andrea Gómez-Vanegas","doi":"10.1002/bip.23644","DOIUrl":null,"url":null,"abstract":"<p><p>Polyhydroxyalkanoates are biodegradable, natural polyesters with the potential to replace petroleum-based plastics. However, high production costs limit their competitiveness. This study assessed the ability of Halomonas boliviensis, a halophilic bacterium, to synthesize polyhydroxybutyrate (PHB) from an agricultural residue, oil palm empty fruit bunch (OPEFB), in highly saline solutions that minimize contamination risk. OPEFB, containing glucose, xylose, and arabinose, offers a cost-effective alternative to pure sugar substrates and aids in waste management. PHB production from OPEFB was compared with fermentations using these sugars. H. boliviensis successfully synthesized PHB from all substrates, achieving the highest PHB content from glucose (54.63%), followed by xylose (40.18%), OPEFB (33.59%), and arabinose (33.52%). Glucose in the OPEFB hydrolysate was entirely depleted after 72 h, while xylose showed minimal consumption. This research highlights the potential of using low-cost carbon sources like OPEFB for PHB production. Future research should focus on optimizing the fermentation process to increase PHB yields, making it a more viable alternative to traditional plastics.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23644"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyhydroxybutyrate Synthesis by the Halophilic Bacterium, Halomonas boliviensis, in Oil Palm Empty Fruit Bunch Hydrolysate.\",\"authors\":\"Diana Catalina Arcila-Echavarría, Thelmo Alejandro Lu-Chau, Natalia Andrea Gómez-Vanegas\",\"doi\":\"10.1002/bip.23644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyhydroxyalkanoates are biodegradable, natural polyesters with the potential to replace petroleum-based plastics. However, high production costs limit their competitiveness. This study assessed the ability of Halomonas boliviensis, a halophilic bacterium, to synthesize polyhydroxybutyrate (PHB) from an agricultural residue, oil palm empty fruit bunch (OPEFB), in highly saline solutions that minimize contamination risk. OPEFB, containing glucose, xylose, and arabinose, offers a cost-effective alternative to pure sugar substrates and aids in waste management. PHB production from OPEFB was compared with fermentations using these sugars. H. boliviensis successfully synthesized PHB from all substrates, achieving the highest PHB content from glucose (54.63%), followed by xylose (40.18%), OPEFB (33.59%), and arabinose (33.52%). Glucose in the OPEFB hydrolysate was entirely depleted after 72 h, while xylose showed minimal consumption. This research highlights the potential of using low-cost carbon sources like OPEFB for PHB production. Future research should focus on optimizing the fermentation process to increase PHB yields, making it a more viable alternative to traditional plastics.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\" \",\"pages\":\"e23644\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/bip.23644\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bip.23644","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚羟基烷酸酯是可生物降解的天然聚酯,具有取代石油基塑料的潜力。然而,高昂的生产成本限制了它们的竞争力。本研究评估了嗜盐细菌嗜盐单胞菌(Halomonas boliviensis)在高盐溶液中从农业残留物油棕空果束(OPEFB)合成聚羟基丁酸盐(PHB)的能力,从而将污染风险降至最低。OPEFB含有葡萄糖、木糖和阿拉伯糖,为纯糖底物提供了一种具有成本效益的替代品,并有助于废物管理。比较了OPEFB与使用这些糖发酵产生的PHB。H. boliviensis成功地从所有底物合成了PHB,其中葡萄糖的PHB含量最高(54.63%),其次是木糖(40.18%)、OPEFB(33.59%)和阿拉伯糖(33.52%)。OPEFB水解产物中的葡萄糖在72 h后完全耗尽,而木糖的消耗最小。这项研究强调了使用OPEFB等低成本碳源生产PHB的潜力。未来的研究应侧重于优化发酵过程,以提高PHB的产量,使其成为传统塑料的更可行的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyhydroxybutyrate Synthesis by the Halophilic Bacterium, Halomonas boliviensis, in Oil Palm Empty Fruit Bunch Hydrolysate.

Polyhydroxyalkanoates are biodegradable, natural polyesters with the potential to replace petroleum-based plastics. However, high production costs limit their competitiveness. This study assessed the ability of Halomonas boliviensis, a halophilic bacterium, to synthesize polyhydroxybutyrate (PHB) from an agricultural residue, oil palm empty fruit bunch (OPEFB), in highly saline solutions that minimize contamination risk. OPEFB, containing glucose, xylose, and arabinose, offers a cost-effective alternative to pure sugar substrates and aids in waste management. PHB production from OPEFB was compared with fermentations using these sugars. H. boliviensis successfully synthesized PHB from all substrates, achieving the highest PHB content from glucose (54.63%), followed by xylose (40.18%), OPEFB (33.59%), and arabinose (33.52%). Glucose in the OPEFB hydrolysate was entirely depleted after 72 h, while xylose showed minimal consumption. This research highlights the potential of using low-cost carbon sources like OPEFB for PHB production. Future research should focus on optimizing the fermentation process to increase PHB yields, making it a more viable alternative to traditional plastics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Evaluating Electrospun Polycaprolactone Fibers for Blood-Contacting Applications. Plasma-Activated Water/Ultrasound as a Green Method to Modify Wood Fiber By-Product: Insights of Their Mechanical Performance in Polylactic Acid-Based Biofilms. Eco-Friendly Fabrication of FeS2 QD-Chitosan Biopolymer Composites: Green Synthetic Approach. Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch. Reversible Redox Controlled DNA Condensation by a Simple Noncanonical Dicationic Diphenylalanine Derivative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1