充分识别生长和分支网络的时空结构。

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2025-01-21 Epub Date: 2024-12-05 DOI:10.1016/j.bpj.2024.12.002
Thibault Chassereau, Florence Chapeland-Leclerc, Éric Herbert
{"title":"充分识别生长和分支网络的时空结构。","authors":"Thibault Chassereau, Florence Chapeland-Leclerc, Éric Herbert","doi":"10.1016/j.bpj.2024.12.002","DOIUrl":null,"url":null,"abstract":"<p><p>Experimentally monitoring the kinematics of branching network growth is a tricky task, given the complexity of the structures generated in three dimensions. One option is to drive the network in such a way as to obtain two-dimensional growth, enabling a collection of independent images to be obtained. The density of the network generates ambiguous structures, such as overlaps and meetings, which hinder the reconstruction of the chronology of connections. In this paper, we propose a general method for global network reconstruction. Each network connection is defined by a unique label, enabling it to be tracked in time and space. In this work, we distinguish between lateral and apical branches on the one hand, and extremities on the other. Finally, we reconstruct the network after identifying and eliminating overlaps. This method is then applied to the model filamentous fungus Podospora anserina to reconstruct its growing thallus. We derive criteria for differentiating between apical and lateral branches. We find that the outer ring is favorably composed of apical branches, while densification within the network comes from lateral branches. From this, we derive the specific dynamics of each of the two types. Finally, in the absence of any latency phase during growth initiation, we can reconstruct a time based on the equality of apical and lateral branching collections. This makes it possible to directly compare the growth dynamics of different thalli.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"284-296"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full identification of a growing and branching network's spatio-temporal structures.\",\"authors\":\"Thibault Chassereau, Florence Chapeland-Leclerc, Éric Herbert\",\"doi\":\"10.1016/j.bpj.2024.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimentally monitoring the kinematics of branching network growth is a tricky task, given the complexity of the structures generated in three dimensions. One option is to drive the network in such a way as to obtain two-dimensional growth, enabling a collection of independent images to be obtained. The density of the network generates ambiguous structures, such as overlaps and meetings, which hinder the reconstruction of the chronology of connections. In this paper, we propose a general method for global network reconstruction. Each network connection is defined by a unique label, enabling it to be tracked in time and space. In this work, we distinguish between lateral and apical branches on the one hand, and extremities on the other. Finally, we reconstruct the network after identifying and eliminating overlaps. This method is then applied to the model filamentous fungus Podospora anserina to reconstruct its growing thallus. We derive criteria for differentiating between apical and lateral branches. We find that the outer ring is favorably composed of apical branches, while densification within the network comes from lateral branches. From this, we derive the specific dynamics of each of the two types. Finally, in the absence of any latency phase during growth initiation, we can reconstruct a time based on the equality of apical and lateral branching collections. This makes it possible to directly compare the growth dynamics of different thalli.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"284-296\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.12.002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑到三维结构的复杂性,实验监测分支网络生长的运动学是一项棘手的任务。一种方法是驱动网络,使其获得二维增长,从而获得独立图像的集合。网络的密度产生了模糊的结构,如重叠和会议,这阻碍了连接时间顺序的重建。本文提出了一种全局网络重构的通用方法。每个网络连接都有一个唯一的标签,可以在时间和空间上进行跟踪。在这项工作中,我们一方面区分侧枝和顶枝,另一方面区分四肢。最后,我们在识别和消除重叠后重建网络。然后将该方法应用于模型丝状真菌鹅足孢重建其生长的菌体。我们得出的标准区分顶端和侧面的分支。我们发现外环有利地由顶端分支组成,而网络内的致密化来自侧分支。由此,我们推导出这两种类型的具体动态。最后,在生长起始阶段没有任何潜伏期的情况下,我们可以根据顶端和侧枝集合的相等性来重建一个时间。这使得直接比较不同菌体的生长动态成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full identification of a growing and branching network's spatio-temporal structures.

Experimentally monitoring the kinematics of branching network growth is a tricky task, given the complexity of the structures generated in three dimensions. One option is to drive the network in such a way as to obtain two-dimensional growth, enabling a collection of independent images to be obtained. The density of the network generates ambiguous structures, such as overlaps and meetings, which hinder the reconstruction of the chronology of connections. In this paper, we propose a general method for global network reconstruction. Each network connection is defined by a unique label, enabling it to be tracked in time and space. In this work, we distinguish between lateral and apical branches on the one hand, and extremities on the other. Finally, we reconstruct the network after identifying and eliminating overlaps. This method is then applied to the model filamentous fungus Podospora anserina to reconstruct its growing thallus. We derive criteria for differentiating between apical and lateral branches. We find that the outer ring is favorably composed of apical branches, while densification within the network comes from lateral branches. From this, we derive the specific dynamics of each of the two types. Finally, in the absence of any latency phase during growth initiation, we can reconstruct a time based on the equality of apical and lateral branching collections. This makes it possible to directly compare the growth dynamics of different thalli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Physical effects of crowdant size and concentration on collective microtubule polymerization. Transformer Graph Variational Autoencoder for Generative Molecular Design. Competing addition processes give distinct growth regimes in the assembly of 1D filaments. Synaptic cleft geometry modulates NMDAR opening probability by tuning neurotransmitter residence time. Adhesion-driven vesicle translocation through membrane-covered pores.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1