基于黎曼流形的解纠缠表示学习多点功能连通性分析。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-03-01 Epub Date: 2024-11-29 DOI:10.1016/j.neunet.2024.106945
Wenyang Li, Mingliang Wang, Mingxia Liu, Qingshan Liu
{"title":"基于黎曼流形的解纠缠表示学习多点功能连通性分析。","authors":"Wenyang Li, Mingliang Wang, Mingxia Liu, Qingshan Liu","doi":"10.1016/j.neunet.2024.106945","DOIUrl":null,"url":null,"abstract":"<p><p>Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies. Also, most existing methods are designed to target one imaging site of fMRI data, which may result in limited training data for learning reliable and robust models. In this paper, we propose a novel Riemannian Manifold-based Disentangled Representation Learning (RM-DRL) framework which is capable of learning invariant representations from fMRI data across multiple sites for brain disorder diagnosis. In RM-DRL, we first employ an SPD-based encoder module to learn a latent unified representation of FC from different sites, which can preserve the Riemannian geometry of the SPD matrices. In latent space, a disentangled representation module is then designed to split the learned features into domain-specific and domain-invariant parts, respectively. Finally, a decoder module is introduced to ensure that sufficient information can be preserved during disentanglement learning. These designs allow us to introduce four types of training objectives to improve the disentanglement learning. Our RM-DRL method is evaluated on the public multi-site ABIDE dataset, showing superior performance compared with several state-of-the-art methods.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106945"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemannian manifold-based disentangled representation learning for multi-site functional connectivity analysis.\",\"authors\":\"Wenyang Li, Mingliang Wang, Mingxia Liu, Qingshan Liu\",\"doi\":\"10.1016/j.neunet.2024.106945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies. Also, most existing methods are designed to target one imaging site of fMRI data, which may result in limited training data for learning reliable and robust models. In this paper, we propose a novel Riemannian Manifold-based Disentangled Representation Learning (RM-DRL) framework which is capable of learning invariant representations from fMRI data across multiple sites for brain disorder diagnosis. In RM-DRL, we first employ an SPD-based encoder module to learn a latent unified representation of FC from different sites, which can preserve the Riemannian geometry of the SPD matrices. In latent space, a disentangled representation module is then designed to split the learned features into domain-specific and domain-invariant parts, respectively. Finally, a decoder module is introduced to ensure that sufficient information can be preserved during disentanglement learning. These designs allow us to introduce four types of training objectives to improve the disentanglement learning. Our RM-DRL method is evaluated on the public multi-site ABIDE dataset, showing superior performance compared with several state-of-the-art methods.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106945\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106945\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106945","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

功能连通性(FC)源于静息状态功能磁共振成像(rs-fMRI),已被广泛用于表征疾病中的大脑异常。通常将FC定义为位于黎曼流形上的对称正定(SPD)矩阵相关矩阵。近年来,人们提出了许多基于学习的FC分析方法,但对于黎曼流形的几何性质,前人的研究尚未得到充分的探讨。此外,大多数现有方法都是针对fMRI数据的一个成像部位设计的,这可能导致学习可靠和鲁棒模型的训练数据有限。在本文中,我们提出了一种新的基于黎曼流形的解纠缠表征学习(RM-DRL)框架,该框架能够从多个部位的fMRI数据中学习不变表征,用于大脑疾病诊断。在RM-DRL中,我们首先使用基于SPD的编码器模块来学习来自不同位点的FC的潜在统一表示,这可以保持SPD矩阵的黎曼几何形状。在潜在空间中,设计了一个解纠缠表示模块,将学习到的特征分别分解为特定领域和领域不变部分。最后,引入了解码器模块,以确保在解纠缠学习过程中保留足够的信息。这些设计允许我们引入四种类型的训练目标来改进解纠缠学习。我们的RM-DRL方法在公共多站点遵守数据集上进行了评估,与几种最先进的方法相比,显示出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Riemannian manifold-based disentangled representation learning for multi-site functional connectivity analysis.

Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies. Also, most existing methods are designed to target one imaging site of fMRI data, which may result in limited training data for learning reliable and robust models. In this paper, we propose a novel Riemannian Manifold-based Disentangled Representation Learning (RM-DRL) framework which is capable of learning invariant representations from fMRI data across multiple sites for brain disorder diagnosis. In RM-DRL, we first employ an SPD-based encoder module to learn a latent unified representation of FC from different sites, which can preserve the Riemannian geometry of the SPD matrices. In latent space, a disentangled representation module is then designed to split the learned features into domain-specific and domain-invariant parts, respectively. Finally, a decoder module is introduced to ensure that sufficient information can be preserved during disentanglement learning. These designs allow us to introduce four types of training objectives to improve the disentanglement learning. Our RM-DRL method is evaluated on the public multi-site ABIDE dataset, showing superior performance compared with several state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1