基于多源遥感影像重建Petermann冰川速度时间序列

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences International Journal of Applied Earth Observation and Geoinformation Pub Date : 2024-12-06 DOI:10.1016/j.jag.2024.104307
Zongze Li, Jinsong Chong, Yawei Zhao, Lijie Diao
{"title":"基于多源遥感影像重建Petermann冰川速度时间序列","authors":"Zongze Li, Jinsong Chong, Yawei Zhao, Lijie Diao","doi":"10.1016/j.jag.2024.104307","DOIUrl":null,"url":null,"abstract":"Glacier velocity is one of the crucial parameters in the research of glacier dynamics. Synthetic aperture radar (SAR), as an active microwave sensor, represents a common method to monitor glacier velocity. However, the changes of glacier surface could cause the data missing of glacier velocity due to incoherence. To meet the demand for glacier velocity monitoring, this paper employs the SAR images of Sentinel-1 in long time series and optical images of Sentinel-2 to investigate the velocity of Petermann glacier in 2021. Firstly, the time series of glacier velocity in the whole year of 2021 is obtained by using SAR images. The glacier velocity extracted from the optical image pairs is used as the initial value of the large missing part of the glacier velocity field. Then the spatiotemporal glacier velocity matrix is constructed and empirical orthogonal function (EOF) analysis is carried out. Among them, the glacier velocity is reconstructed by the glacier velocity estimation method based on confidence, and the complete glacier velocity time series is obtained by iterating to minimize the error of the reconstructed glacier velocity. Finally, the obtained time series of Petermann Glacier velocity in 2021 were statistically analyzed. The statistical results quantified the seasonal differences of Petermann Glacier. In addition, the analysis results show that the temporal and spatial variations of Petermann Glacier velocity are affected by topography and temperature.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"20 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of Petermann glacier velocity time series using multi-source remote sensing images\",\"authors\":\"Zongze Li, Jinsong Chong, Yawei Zhao, Lijie Diao\",\"doi\":\"10.1016/j.jag.2024.104307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glacier velocity is one of the crucial parameters in the research of glacier dynamics. Synthetic aperture radar (SAR), as an active microwave sensor, represents a common method to monitor glacier velocity. However, the changes of glacier surface could cause the data missing of glacier velocity due to incoherence. To meet the demand for glacier velocity monitoring, this paper employs the SAR images of Sentinel-1 in long time series and optical images of Sentinel-2 to investigate the velocity of Petermann glacier in 2021. Firstly, the time series of glacier velocity in the whole year of 2021 is obtained by using SAR images. The glacier velocity extracted from the optical image pairs is used as the initial value of the large missing part of the glacier velocity field. Then the spatiotemporal glacier velocity matrix is constructed and empirical orthogonal function (EOF) analysis is carried out. Among them, the glacier velocity is reconstructed by the glacier velocity estimation method based on confidence, and the complete glacier velocity time series is obtained by iterating to minimize the error of the reconstructed glacier velocity. Finally, the obtained time series of Petermann Glacier velocity in 2021 were statistically analyzed. The statistical results quantified the seasonal differences of Petermann Glacier. In addition, the analysis results show that the temporal and spatial variations of Petermann Glacier velocity are affected by topography and temperature.\",\"PeriodicalId\":50341,\"journal\":{\"name\":\"International Journal of Applied Earth Observation and Geoinformation\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Earth Observation and Geoinformation\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jag.2024.104307\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104307","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

冰川流速是冰川动力学研究的重要参数之一。合成孔径雷达(SAR)作为一种主动式微波传感器,是冰川速度监测的常用方法。然而,冰川表面的变化会由于冰川速度的不相干而导致数据丢失。为了满足冰川速度监测的需求,本文利用Sentinel-1的长时间序列SAR图像和Sentinel-2的光学图像对2021年的Petermann冰川速度进行了研究。首先,利用SAR影像获取2021年全年冰川速度时间序列;利用光学图像对提取的冰川速度作为冰川速度场缺失部分的初始值。然后构建冰川时空速度矩阵,并进行经验正交函数分析。其中,采用基于置信度的冰川速度估计方法重建冰川速度,通过迭代得到完整的冰川速度时间序列,使重建的冰川速度误差最小。最后,对获取的2021年Petermann冰川速度时间序列进行统计分析。统计结果量化了彼得曼冰川的季节差异。此外,分析结果表明,Petermann冰川速度的时空变化受地形和温度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstruction of Petermann glacier velocity time series using multi-source remote sensing images
Glacier velocity is one of the crucial parameters in the research of glacier dynamics. Synthetic aperture radar (SAR), as an active microwave sensor, represents a common method to monitor glacier velocity. However, the changes of glacier surface could cause the data missing of glacier velocity due to incoherence. To meet the demand for glacier velocity monitoring, this paper employs the SAR images of Sentinel-1 in long time series and optical images of Sentinel-2 to investigate the velocity of Petermann glacier in 2021. Firstly, the time series of glacier velocity in the whole year of 2021 is obtained by using SAR images. The glacier velocity extracted from the optical image pairs is used as the initial value of the large missing part of the glacier velocity field. Then the spatiotemporal glacier velocity matrix is constructed and empirical orthogonal function (EOF) analysis is carried out. Among them, the glacier velocity is reconstructed by the glacier velocity estimation method based on confidence, and the complete glacier velocity time series is obtained by iterating to minimize the error of the reconstructed glacier velocity. Finally, the obtained time series of Petermann Glacier velocity in 2021 were statistically analyzed. The statistical results quantified the seasonal differences of Petermann Glacier. In addition, the analysis results show that the temporal and spatial variations of Petermann Glacier velocity are affected by topography and temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Modeling the impact of pandemic on the urban thermal environment over megacities in China: Spatiotemporal analysis from the perspective of heat anomaly variations BSG-WSL: BackScatter-guided weakly supervised learning for water mapping in SAR images Identification of standing dead trees in Robinia pseudoacacia plantations across China’s Loess Plateau using multiple deep learning models Detecting glacial lake water quality indicators from RGB surveillance images via deep learning Synergistic mapping of urban tree canopy height using ICESat-2 data and GF-2 imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1