基于稀疏补充的融合增强多标签特征选择

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-12-05 DOI:10.1016/j.inffus.2024.102813
Yonghao Li, Xiangkun Wang, Xin Yang, Wanfu Gao, Weiping Ding, Tianrui Li
{"title":"基于稀疏补充的融合增强多标签特征选择","authors":"Yonghao Li, Xiangkun Wang, Xin Yang, Wanfu Gao, Weiping Ding, Tianrui Li","doi":"10.1016/j.inffus.2024.102813","DOIUrl":null,"url":null,"abstract":"The exponential increase of multi-label data over various domains demands the development of effective feature selection methods. However, current sparse-learning-based feature selection methods that use LASSO-norm and <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm fail to handle two crucial issues for multi-label data. Firstly, LASSO-based methods remove features with zero-weight values during the feature selection process, some of which may have a certain degree of classification ability. Secondly, <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm-based methods may select redundant features that lead to inefficient classification results. To overcome these issues, we propose a novel sparse supplementation norm that combines inner product regularization and <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm as a novel fusion norm. This innovative fusion norm is designed to enhance the sparsity of feature selection models by leveraging the inherent row-sparse property in the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm. Specifically, the inner product regularization norm can maintain features with potentially useful classification information, which may be discarded in traditional LASSO-based methods. At the same time, the inner product regularization norm can remove redundant features, which is introduced in traditional <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm-based methods. By incorporating this fusion norm into the Sparse-supplementation Regularized multi-label Feature Selection (SRFS) model, our method mitigates feature omission and feature redundancy, ensuring more effective and efficient feature selection for multi-label classification tasks. The experimental results on various benchmark datasets validate the efficiency and effectiveness of our proposed SRFS model.","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"83 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion-enhanced multi-label feature selection with sparse supplementation\",\"authors\":\"Yonghao Li, Xiangkun Wang, Xin Yang, Wanfu Gao, Weiping Ding, Tianrui Li\",\"doi\":\"10.1016/j.inffus.2024.102813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential increase of multi-label data over various domains demands the development of effective feature selection methods. However, current sparse-learning-based feature selection methods that use LASSO-norm and <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm fail to handle two crucial issues for multi-label data. Firstly, LASSO-based methods remove features with zero-weight values during the feature selection process, some of which may have a certain degree of classification ability. Secondly, <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm-based methods may select redundant features that lead to inefficient classification results. To overcome these issues, we propose a novel sparse supplementation norm that combines inner product regularization and <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm as a novel fusion norm. This innovative fusion norm is designed to enhance the sparsity of feature selection models by leveraging the inherent row-sparse property in the <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm. Specifically, the inner product regularization norm can maintain features with potentially useful classification information, which may be discarded in traditional LASSO-based methods. At the same time, the inner product regularization norm can remove redundant features, which is introduced in traditional <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm-based methods. By incorporating this fusion norm into the Sparse-supplementation Regularized multi-label Feature Selection (SRFS) model, our method mitigates feature omission and feature redundancy, ensuring more effective and efficient feature selection for multi-label classification tasks. The experimental results on various benchmark datasets validate the efficiency and effectiveness of our proposed SRFS model.\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.inffus.2024.102813\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2024.102813","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

不同领域的多标签数据呈指数增长,要求开发有效的特征选择方法。然而,目前使用lasso -范数和l2,1-范数的基于稀疏学习的特征选择方法无法处理多标签数据的两个关键问题。首先,基于lasso的方法在特征选择过程中去除权值为零的特征,其中一些特征可能具有一定的分类能力。其次,基于l2,1-norm的方法可能会选择冗余的特征,导致分类结果效率低下。为了克服这些问题,我们提出了一种新的稀疏补充范数,它将内积正则化和l2,1范数结合起来作为一种新的融合范数。这种创新的融合范数旨在利用l2,1范数固有的行稀疏特性来增强特征选择模型的稀疏性。具体而言,内积正则化范数可以保留具有潜在有用分类信息的特征,而传统的基于lasso的方法可能会丢弃这些特征。同时,内积正则化范数可以去除传统基于l2,1范数方法中引入的冗余特征。通过将该融合范数融入到稀疏补充正则化多标签特征选择(SRFS)模型中,我们的方法减轻了特征遗漏和特征冗余,确保了多标签分类任务中更有效和高效的特征选择。在各种基准数据集上的实验结果验证了我们提出的SRFS模型的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion-enhanced multi-label feature selection with sparse supplementation
The exponential increase of multi-label data over various domains demands the development of effective feature selection methods. However, current sparse-learning-based feature selection methods that use LASSO-norm and l2,1-norm fail to handle two crucial issues for multi-label data. Firstly, LASSO-based methods remove features with zero-weight values during the feature selection process, some of which may have a certain degree of classification ability. Secondly, l2,1-norm-based methods may select redundant features that lead to inefficient classification results. To overcome these issues, we propose a novel sparse supplementation norm that combines inner product regularization and l2,1-norm as a novel fusion norm. This innovative fusion norm is designed to enhance the sparsity of feature selection models by leveraging the inherent row-sparse property in the l2,1-norm. Specifically, the inner product regularization norm can maintain features with potentially useful classification information, which may be discarded in traditional LASSO-based methods. At the same time, the inner product regularization norm can remove redundant features, which is introduced in traditional l2,1-norm-based methods. By incorporating this fusion norm into the Sparse-supplementation Regularized multi-label Feature Selection (SRFS) model, our method mitigates feature omission and feature redundancy, ensuring more effective and efficient feature selection for multi-label classification tasks. The experimental results on various benchmark datasets validate the efficiency and effectiveness of our proposed SRFS model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
SenCounter: Towards category-agnostic action counting in open sensor sequences Personalized trust incentive mechanisms with personality characteristics for minimum cost consensus in group decision making Hallucinations of large multimodal models: Problem and countermeasures Optimizing the environmental design and management of public green spaces: Analyzing urban infrastructure and long-term user experience with a focus on streetlight density in the city of Las Vegas, NV DF-BSFNet: A bilateral synergistic fusion network with novel dynamic flow convolution for robust road extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1