Jaíne Ames , Edivania G. de Batista , Tamiris R. Storck , Jossiele W. Leitemperger , Julia Canzian , João V. Borba , Silvana I. Schneider , Diovana G. de Batista , Sofia Bertoli , Osmar D. Prestes , Luana Floriano , Karine Reinke , Renato Zanella , Marlon C. Vasconcelos , Antônio A. Miragem , Denis B. Rosemberg , Vania L. Loro
{"title":"环境相关剂量草甘膦和高温的综合效应:一种综合的多生物标志物方法来描述斑马鱼的氧化还原状态和行为。","authors":"Jaíne Ames , Edivania G. de Batista , Tamiris R. Storck , Jossiele W. Leitemperger , Julia Canzian , João V. Borba , Silvana I. Schneider , Diovana G. de Batista , Sofia Bertoli , Osmar D. Prestes , Luana Floriano , Karine Reinke , Renato Zanella , Marlon C. Vasconcelos , Antônio A. Miragem , Denis B. Rosemberg , Vania L. Loro","doi":"10.1016/j.cbpc.2024.110095","DOIUrl":null,"url":null,"abstract":"<div><div>Glyphosate, a pesticide commonly found in aquatic ecosystems, affects this habitat and nontarget organisms such as fish. The increase in water temperature, linked to factors such as climate change, poses a considerable threat. Despite extensive ecotoxicological research, we still do not know the real individual and specific consequences of continued exposure to glyphosate and high temperatures, simulating a scenario where the aquatic environment remains contaminated and temperatures continue to rise. Therefore, in this study, we examined the effects of exposure to environmentally relevant concentrations of glyphosate, active ingredient glyphosate (GAI), and glyphosate-based herbicide (GBH) in combination with high temperature (34 °C) in adult zebrafish (<em>Danio rerio</em>). The fish were acclimated to 28 or 34 °C for 96 h. The exposure to 225 and 450 μg L<sup>−1</sup> (GBH or GAI) at 28 or 34 °C for 7 days. We analyzed behavioral endpoints (anxiety-like response, sociability, and aggressivity) and biochemical biomarkers of the brain and muscle (oxidative stress). Anxiety-like responses and decreased sociability were disrupted by the combination of glyphosate and high temperature. Furthermore, there is a decrease in Acetylcholinesterase activity in the brain, and an increase in Lipid Peroxidation, Protein Carbonylation, Acetylcholinesterase activity, and Glutathione S-Transferase activity in the muscle. These results demonstrated oxidative stress, anxiety-like behavior and decreased sociability caused by glyphosate and high temperature. We concluded that the combined effects of glyphosate and high temperature affected redox homeostasis and behavior, emphasizing that the field of glyphosate pollution should be carefully considered when evaluating the effects of climate change.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"289 ","pages":"Article 110095"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The combined effect of environmentally relevant doses of glyphosate and high temperature: An integrated and multibiomarker approach to delineate redox status and behavior in Danio rerio\",\"authors\":\"Jaíne Ames , Edivania G. de Batista , Tamiris R. Storck , Jossiele W. Leitemperger , Julia Canzian , João V. Borba , Silvana I. Schneider , Diovana G. de Batista , Sofia Bertoli , Osmar D. Prestes , Luana Floriano , Karine Reinke , Renato Zanella , Marlon C. Vasconcelos , Antônio A. Miragem , Denis B. Rosemberg , Vania L. Loro\",\"doi\":\"10.1016/j.cbpc.2024.110095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glyphosate, a pesticide commonly found in aquatic ecosystems, affects this habitat and nontarget organisms such as fish. The increase in water temperature, linked to factors such as climate change, poses a considerable threat. Despite extensive ecotoxicological research, we still do not know the real individual and specific consequences of continued exposure to glyphosate and high temperatures, simulating a scenario where the aquatic environment remains contaminated and temperatures continue to rise. Therefore, in this study, we examined the effects of exposure to environmentally relevant concentrations of glyphosate, active ingredient glyphosate (GAI), and glyphosate-based herbicide (GBH) in combination with high temperature (34 °C) in adult zebrafish (<em>Danio rerio</em>). The fish were acclimated to 28 or 34 °C for 96 h. The exposure to 225 and 450 μg L<sup>−1</sup> (GBH or GAI) at 28 or 34 °C for 7 days. We analyzed behavioral endpoints (anxiety-like response, sociability, and aggressivity) and biochemical biomarkers of the brain and muscle (oxidative stress). Anxiety-like responses and decreased sociability were disrupted by the combination of glyphosate and high temperature. Furthermore, there is a decrease in Acetylcholinesterase activity in the brain, and an increase in Lipid Peroxidation, Protein Carbonylation, Acetylcholinesterase activity, and Glutathione S-Transferase activity in the muscle. These results demonstrated oxidative stress, anxiety-like behavior and decreased sociability caused by glyphosate and high temperature. We concluded that the combined effects of glyphosate and high temperature affected redox homeostasis and behavior, emphasizing that the field of glyphosate pollution should be carefully considered when evaluating the effects of climate change.</div></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"289 \",\"pages\":\"Article 110095\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624002631\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002631","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The combined effect of environmentally relevant doses of glyphosate and high temperature: An integrated and multibiomarker approach to delineate redox status and behavior in Danio rerio
Glyphosate, a pesticide commonly found in aquatic ecosystems, affects this habitat and nontarget organisms such as fish. The increase in water temperature, linked to factors such as climate change, poses a considerable threat. Despite extensive ecotoxicological research, we still do not know the real individual and specific consequences of continued exposure to glyphosate and high temperatures, simulating a scenario where the aquatic environment remains contaminated and temperatures continue to rise. Therefore, in this study, we examined the effects of exposure to environmentally relevant concentrations of glyphosate, active ingredient glyphosate (GAI), and glyphosate-based herbicide (GBH) in combination with high temperature (34 °C) in adult zebrafish (Danio rerio). The fish were acclimated to 28 or 34 °C for 96 h. The exposure to 225 and 450 μg L−1 (GBH or GAI) at 28 or 34 °C for 7 days. We analyzed behavioral endpoints (anxiety-like response, sociability, and aggressivity) and biochemical biomarkers of the brain and muscle (oxidative stress). Anxiety-like responses and decreased sociability were disrupted by the combination of glyphosate and high temperature. Furthermore, there is a decrease in Acetylcholinesterase activity in the brain, and an increase in Lipid Peroxidation, Protein Carbonylation, Acetylcholinesterase activity, and Glutathione S-Transferase activity in the muscle. These results demonstrated oxidative stress, anxiety-like behavior and decreased sociability caused by glyphosate and high temperature. We concluded that the combined effects of glyphosate and high temperature affected redox homeostasis and behavior, emphasizing that the field of glyphosate pollution should be carefully considered when evaluating the effects of climate change.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.