{"title":"重复冲击载荷作用下冻融红砂岩能量演化特征及力学性能","authors":"Yonghui Shen, Rongrong Zhang, Dongdong Ma","doi":"10.1007/s11043-024-09741-0","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the mechanical properties and energy evolution characteristics of freeze-thawed (F-T) red sandstone subjected to repeated impact loads, a series of repeated impacts were conducted on F-T red sandstone specimens using a split Hopkinson pressure bar (SHPB) device. The results demonstrate that with an increase in F-T cycle numbers, there is a continuous decrease in P-wave velocity accompanied by an increase in porosity and the number of cracks, leading to significant alterations in the microstructure. Both peak stress and modulus of elasticity show negative correlations with both the repeated impact times and F-T cycle numbers, whereas the peak strain and average strain rate exhibit positive correlations with these parameters. Moreover, the absorption energy per unit volume increases with both impact times and F-T cycle numbers, whereas the cumulative absorption energy per unit volume follows a linear increment trend. The established dynamic constitutive model can accurately describe the dynamic stress–strain characteristics of specimens under the repeated impact, demonstrating its high precision in forecasting. Furthermore, the observed failure mode of the specimen was characterized by tensile behavior, with a transition from intergranular fractures to transgranular fractures evident in the microcracks.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy evolution characteristics and mechanical properties of freeze-thawed red sandstone under repeat impact loading\",\"authors\":\"Yonghui Shen, Rongrong Zhang, Dongdong Ma\",\"doi\":\"10.1007/s11043-024-09741-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate the mechanical properties and energy evolution characteristics of freeze-thawed (F-T) red sandstone subjected to repeated impact loads, a series of repeated impacts were conducted on F-T red sandstone specimens using a split Hopkinson pressure bar (SHPB) device. The results demonstrate that with an increase in F-T cycle numbers, there is a continuous decrease in P-wave velocity accompanied by an increase in porosity and the number of cracks, leading to significant alterations in the microstructure. Both peak stress and modulus of elasticity show negative correlations with both the repeated impact times and F-T cycle numbers, whereas the peak strain and average strain rate exhibit positive correlations with these parameters. Moreover, the absorption energy per unit volume increases with both impact times and F-T cycle numbers, whereas the cumulative absorption energy per unit volume follows a linear increment trend. The established dynamic constitutive model can accurately describe the dynamic stress–strain characteristics of specimens under the repeated impact, demonstrating its high precision in forecasting. Furthermore, the observed failure mode of the specimen was characterized by tensile behavior, with a transition from intergranular fractures to transgranular fractures evident in the microcracks.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09741-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09741-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Energy evolution characteristics and mechanical properties of freeze-thawed red sandstone under repeat impact loading
To investigate the mechanical properties and energy evolution characteristics of freeze-thawed (F-T) red sandstone subjected to repeated impact loads, a series of repeated impacts were conducted on F-T red sandstone specimens using a split Hopkinson pressure bar (SHPB) device. The results demonstrate that with an increase in F-T cycle numbers, there is a continuous decrease in P-wave velocity accompanied by an increase in porosity and the number of cracks, leading to significant alterations in the microstructure. Both peak stress and modulus of elasticity show negative correlations with both the repeated impact times and F-T cycle numbers, whereas the peak strain and average strain rate exhibit positive correlations with these parameters. Moreover, the absorption energy per unit volume increases with both impact times and F-T cycle numbers, whereas the cumulative absorption energy per unit volume follows a linear increment trend. The established dynamic constitutive model can accurately describe the dynamic stress–strain characteristics of specimens under the repeated impact, demonstrating its high precision in forecasting. Furthermore, the observed failure mode of the specimen was characterized by tensile behavior, with a transition from intergranular fractures to transgranular fractures evident in the microcracks.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.