Ming Li, Yaru Dong, Ruiqi Zhang, Xuena Zhu, Shuqian Shen, Lei Li, Shao-Ming Fei
{"title":"关于真多部纠缠并发下界的一个注记","authors":"Ming Li, Yaru Dong, Ruiqi Zhang, Xuena Zhu, Shuqian Shen, Lei Li, Shao-Ming Fei","doi":"10.1007/s11128-024-04607-3","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum entanglement plays a pivotal role in quantum information processing. Quantifying quantum entanglement is a challenging and essential research area within the field. This manuscript explores the relationships between bipartite entanglement concurrence, multipartite entanglement concurrence, and genuine multipartite entanglement (GME) concurrence. We derive lower bounds on GME concurrence from these relationships, demonstrating their superiority over existing results through rigorous proofs and numerical examples. Additionally, we investigate the connections between GME concurrence and other entanglement measures, such as tangle and global negativity, in multipartite quantum systems.\n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the lower bounds of genuine multipartite entanglement concurrence\",\"authors\":\"Ming Li, Yaru Dong, Ruiqi Zhang, Xuena Zhu, Shuqian Shen, Lei Li, Shao-Ming Fei\",\"doi\":\"10.1007/s11128-024-04607-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum entanglement plays a pivotal role in quantum information processing. Quantifying quantum entanglement is a challenging and essential research area within the field. This manuscript explores the relationships between bipartite entanglement concurrence, multipartite entanglement concurrence, and genuine multipartite entanglement (GME) concurrence. We derive lower bounds on GME concurrence from these relationships, demonstrating their superiority over existing results through rigorous proofs and numerical examples. Additionally, we investigate the connections between GME concurrence and other entanglement measures, such as tangle and global negativity, in multipartite quantum systems.\\n</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 12\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04607-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04607-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
A note on the lower bounds of genuine multipartite entanglement concurrence
Quantum entanglement plays a pivotal role in quantum information processing. Quantifying quantum entanglement is a challenging and essential research area within the field. This manuscript explores the relationships between bipartite entanglement concurrence, multipartite entanglement concurrence, and genuine multipartite entanglement (GME) concurrence. We derive lower bounds on GME concurrence from these relationships, demonstrating their superiority over existing results through rigorous proofs and numerical examples. Additionally, we investigate the connections between GME concurrence and other entanglement measures, such as tangle and global negativity, in multipartite quantum systems.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.