大埃塞俄比亚复兴大坝可以产生可持续的水力发电,同时在长期干旱期间最大限度地减少下游的缺水

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-12-09 DOI:10.1038/s43247-024-01821-w
Essam Heggy, Abotalib Z. Abotalib, Jongeun You, Emmanuel Hanert, Mohamed Ramah
{"title":"大埃塞俄比亚复兴大坝可以产生可持续的水力发电,同时在长期干旱期间最大限度地减少下游的缺水","authors":"Essam Heggy, Abotalib Z. Abotalib, Jongeun You, Emmanuel Hanert, Mohamed Ramah","doi":"10.1038/s43247-024-01821-w","DOIUrl":null,"url":null,"abstract":"Optimizing hydropower generation from the Nile upstream mega-dams during prolonged droughts while minimizing the downstream water deficit is the cornerstone in resolving the ongoing major water conflict in the Eastern Nile River Basin. A decade of negotiation and mediation has been unsuccessful, mainly due to the hydraulic uncertainties associated with operating the Grand Ethiopian Renaissance Dam during prolonged droughts. Based on the negotiation outcomes, we provide comprehensive assessments of the efficiency of multiple drought-mitigation policies for the impact of dam operation. Our results suggest it can generate almost optimal hydropower without a noticeable downstream deficit during wet, average, and temporary drought flow conditions. For prolonged drought, we identify an ideal operation policy allowing the Grand Ethiopian Renaissance Dam to generate a sustainable energy of 87% of its optimal hydropower without generating additional downstream water deficit. Furthermore, we provide four intermediate policies demonstrating enhanced upstream hydropower generation while minimizing dam-induced downstream water deficits. Our findings attempt to bridge the negotiation disparities in the Nile hydropower mega-dams operations during prolonged drought and foster an actionable and collaborative framework. Nile’s river mega-dams can operate collaboratively to generate upstream sustainable hydropower and minimize downstream water deficit during drought events, according to an analysis that combines the water resources systems model and policy scenarios.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-15"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01821-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Grand Ethiopian Renaissance Dam can generate sustainable hydropower while minimizing downstream water deficit during prolonged droughts\",\"authors\":\"Essam Heggy, Abotalib Z. Abotalib, Jongeun You, Emmanuel Hanert, Mohamed Ramah\",\"doi\":\"10.1038/s43247-024-01821-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing hydropower generation from the Nile upstream mega-dams during prolonged droughts while minimizing the downstream water deficit is the cornerstone in resolving the ongoing major water conflict in the Eastern Nile River Basin. A decade of negotiation and mediation has been unsuccessful, mainly due to the hydraulic uncertainties associated with operating the Grand Ethiopian Renaissance Dam during prolonged droughts. Based on the negotiation outcomes, we provide comprehensive assessments of the efficiency of multiple drought-mitigation policies for the impact of dam operation. Our results suggest it can generate almost optimal hydropower without a noticeable downstream deficit during wet, average, and temporary drought flow conditions. For prolonged drought, we identify an ideal operation policy allowing the Grand Ethiopian Renaissance Dam to generate a sustainable energy of 87% of its optimal hydropower without generating additional downstream water deficit. Furthermore, we provide four intermediate policies demonstrating enhanced upstream hydropower generation while minimizing dam-induced downstream water deficits. Our findings attempt to bridge the negotiation disparities in the Nile hydropower mega-dams operations during prolonged drought and foster an actionable and collaborative framework. Nile’s river mega-dams can operate collaboratively to generate upstream sustainable hydropower and minimize downstream water deficit during drought events, according to an analysis that combines the water resources systems model and policy scenarios.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01821-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01821-w\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01821-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在长期干旱期间,优化尼罗河上游大型水坝的水力发电,同时最大限度地减少下游的水资源短缺,是解决东尼罗河流域持续存在的主要水资源冲突的基石。十年来的谈判和调解一直没有成功,主要是由于大埃塞俄比亚复兴大坝在长期干旱期间运行的水力不确定性。根据谈判结果,我们对大坝运行影响的多种抗旱政策的效率进行了全面评估。我们的研究结果表明,在潮湿、平均和暂时干旱的水流条件下,它可以产生几乎最优的水力发电,而不会出现明显的下游赤字。对于长期干旱,我们确定了一个理想的运行政策,允许大埃塞俄比亚复兴大坝产生87%的最佳水力发电的可持续能源,而不会产生额外的下游缺水。此外,我们提供了四个中间政策,展示了上游水力发电的增强,同时最大限度地减少了大坝引起的下游水资源短缺。我们的研究结果试图弥合尼罗河水电大型水坝在长期干旱期间运营的谈判差异,并建立一个可操作的合作框架。根据水资源系统模型和政策情景相结合的一项分析,尼罗河的大型水坝可以协同运行,产生上游可持续的水电,并在干旱事件中最大限度地减少下游的水短缺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grand Ethiopian Renaissance Dam can generate sustainable hydropower while minimizing downstream water deficit during prolonged droughts
Optimizing hydropower generation from the Nile upstream mega-dams during prolonged droughts while minimizing the downstream water deficit is the cornerstone in resolving the ongoing major water conflict in the Eastern Nile River Basin. A decade of negotiation and mediation has been unsuccessful, mainly due to the hydraulic uncertainties associated with operating the Grand Ethiopian Renaissance Dam during prolonged droughts. Based on the negotiation outcomes, we provide comprehensive assessments of the efficiency of multiple drought-mitigation policies for the impact of dam operation. Our results suggest it can generate almost optimal hydropower without a noticeable downstream deficit during wet, average, and temporary drought flow conditions. For prolonged drought, we identify an ideal operation policy allowing the Grand Ethiopian Renaissance Dam to generate a sustainable energy of 87% of its optimal hydropower without generating additional downstream water deficit. Furthermore, we provide four intermediate policies demonstrating enhanced upstream hydropower generation while minimizing dam-induced downstream water deficits. Our findings attempt to bridge the negotiation disparities in the Nile hydropower mega-dams operations during prolonged drought and foster an actionable and collaborative framework. Nile’s river mega-dams can operate collaboratively to generate upstream sustainable hydropower and minimize downstream water deficit during drought events, according to an analysis that combines the water resources systems model and policy scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Kaolinite induces rapid authigenic mineralisation in unburied shrimps. Homo erectus adapted to steppe-desert climate extremes one million years ago. A transdisciplinary, comparative analysis reveals key risks from Arctic permafrost thaw. The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds. Revisiting the Last Ice Area projections from a high-resolution Global Earth System Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1