间伐能促进森林对干旱的遗传适应吗?一种具有干扰状态的Demo-Genetic建模方法。

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-12-09 DOI:10.1111/eva.70051
Victor Fririon, Hendrik Davi, Sylvie Oddou-Muratorio, Gauthier Ligot, François Lefèvre
{"title":"间伐能促进森林对干旱的遗传适应吗?一种具有干扰状态的Demo-Genetic建模方法。","authors":"Victor Fririon,&nbsp;Hendrik Davi,&nbsp;Sylvie Oddou-Muratorio,&nbsp;Gauthier Ligot,&nbsp;François Lefèvre","doi":"10.1111/eva.70051","DOIUrl":null,"url":null,"abstract":"<p>In managed populations—whether for production or conservation—management practices can interfere with natural eco-evolutionary processes, providing opportunities to mitigate immediate impacts of disturbances or enhance selection on tolerance traits. Here, we used a modelling approach to explore the interplay and feedback loops among drought regimes, natural selection and tree thinning in naturally regenerated monospecific forests. We conducted a simulation experiment spanning three nonoverlapping generations with the individual-based demo-genetic model Luberon2. Luberon2 integrates forest dynamics processes driving survival and mating success, including tree growth, competition, drought impacts and regeneration, with genetic variation in quantitative traits related to these processes. We focused on two variable traits: individual vigour, determining diameter growth potential without stress as the deviation from average stand growth, and individual sensitivity to drought stress as the slope of the relationship between diameter growth and drought stress level. We simulated simplified thinning scenarios, tailored to even-aged stands. Considering plausible genetic variation and contrasting drought regimes, the predicted evolutionary rates for both traits aligned with documented rates in wild plant and animal populations. Thinning considerably reduced natural selective pressures caused by competition and drought compared to unthinned stands. However, the conventional thinning practice of retaining the larger trees resulted in indirect anthropogenic selection that enhanced genetic gain in vigour and lowered sensitivity by up to 30%. More intensive thinning aimed at reducing drought stress by reducing stand density hampered the selection against sensitivity to drought, potentially hindering long-term adaptation. Conversely, avoiding the early, nonselective thinning step—thereby promoting both natural and anthropogenic selection—ultimately resulted in better stand performance while maintaining long-term evolvability. This study emphasises the potential of evolution-oriented forestry strategies to combine drought stress mitigation with genetic adaptation. It provides general insights into how population management, disturbance regimes and eco-evolutionary responses interfere, aiding sustainable decision-making amid environmental uncertainties.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627118/pdf/","citationCount":"0","resultStr":"{\"title\":\"Can Thinning Foster Forest Genetic Adaptation to Drought? A Demo-Genetic Modelling Approach With Disturbance Regimes\",\"authors\":\"Victor Fririon,&nbsp;Hendrik Davi,&nbsp;Sylvie Oddou-Muratorio,&nbsp;Gauthier Ligot,&nbsp;François Lefèvre\",\"doi\":\"10.1111/eva.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In managed populations—whether for production or conservation—management practices can interfere with natural eco-evolutionary processes, providing opportunities to mitigate immediate impacts of disturbances or enhance selection on tolerance traits. Here, we used a modelling approach to explore the interplay and feedback loops among drought regimes, natural selection and tree thinning in naturally regenerated monospecific forests. We conducted a simulation experiment spanning three nonoverlapping generations with the individual-based demo-genetic model Luberon2. Luberon2 integrates forest dynamics processes driving survival and mating success, including tree growth, competition, drought impacts and regeneration, with genetic variation in quantitative traits related to these processes. We focused on two variable traits: individual vigour, determining diameter growth potential without stress as the deviation from average stand growth, and individual sensitivity to drought stress as the slope of the relationship between diameter growth and drought stress level. We simulated simplified thinning scenarios, tailored to even-aged stands. Considering plausible genetic variation and contrasting drought regimes, the predicted evolutionary rates for both traits aligned with documented rates in wild plant and animal populations. Thinning considerably reduced natural selective pressures caused by competition and drought compared to unthinned stands. However, the conventional thinning practice of retaining the larger trees resulted in indirect anthropogenic selection that enhanced genetic gain in vigour and lowered sensitivity by up to 30%. More intensive thinning aimed at reducing drought stress by reducing stand density hampered the selection against sensitivity to drought, potentially hindering long-term adaptation. Conversely, avoiding the early, nonselective thinning step—thereby promoting both natural and anthropogenic selection—ultimately resulted in better stand performance while maintaining long-term evolvability. This study emphasises the potential of evolution-oriented forestry strategies to combine drought stress mitigation with genetic adaptation. It provides general insights into how population management, disturbance regimes and eco-evolutionary responses interfere, aiding sustainable decision-making amid environmental uncertainties.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"17 12\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627118/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.70051\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70051","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在被管理的种群中,无论是生产还是保护,管理实践都可能干扰自然生态进化过程,为减轻干扰的直接影响或加强对耐受性性状的选择提供机会。在这里,我们使用建模方法来探索自然再生的单一森林中干旱制度、自然选择和树木间伐之间的相互作用和反馈回路。我们用基于个体的人类遗传模型Luberon2进行了一个跨越三代的模拟实验。Luberon2整合了驱动生存和交配成功的森林动态过程,包括树木生长、竞争、干旱影响和更新,以及与这些过程相关的数量性状的遗传变异。我们重点研究了两个可变性状:个体活力,确定了在没有胁迫的情况下林分生长的直径生长势,作为与平均林分生长的偏差,以及个体对干旱胁迫的敏感性,作为直径生长与干旱胁迫水平关系的斜率。我们模拟了简化的间伐场景,为平均年龄的林分量身定制。考虑到似是而非的遗传变异和对比的干旱状况,这两种性状的预测进化速率与野生动植物种群中记录的速率一致。与未疏伐林分相比,疏伐大大降低了竞争和干旱造成的自然选择压力。然而,保留较大树木的传统间伐做法导致间接的人为选择,增加了活力的遗传增益,降低了高达30%的敏感性。旨在通过降低林分密度来减轻干旱胁迫的更密集的间伐阻碍了对干旱敏感的选择,潜在地阻碍了长期适应。相反,避免早期的非选择性间伐步骤——从而促进自然和人为选择——最终会在保持长期进化能力的同时获得更好的林分表现。这项研究强调了以进化为导向的林业战略将干旱胁迫缓解与遗传适应相结合的潜力。它提供了关于人口管理、干扰制度和生态进化反应如何干扰的一般见解,有助于在环境不确定的情况下做出可持续的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can Thinning Foster Forest Genetic Adaptation to Drought? A Demo-Genetic Modelling Approach With Disturbance Regimes

In managed populations—whether for production or conservation—management practices can interfere with natural eco-evolutionary processes, providing opportunities to mitigate immediate impacts of disturbances or enhance selection on tolerance traits. Here, we used a modelling approach to explore the interplay and feedback loops among drought regimes, natural selection and tree thinning in naturally regenerated monospecific forests. We conducted a simulation experiment spanning three nonoverlapping generations with the individual-based demo-genetic model Luberon2. Luberon2 integrates forest dynamics processes driving survival and mating success, including tree growth, competition, drought impacts and regeneration, with genetic variation in quantitative traits related to these processes. We focused on two variable traits: individual vigour, determining diameter growth potential without stress as the deviation from average stand growth, and individual sensitivity to drought stress as the slope of the relationship between diameter growth and drought stress level. We simulated simplified thinning scenarios, tailored to even-aged stands. Considering plausible genetic variation and contrasting drought regimes, the predicted evolutionary rates for both traits aligned with documented rates in wild plant and animal populations. Thinning considerably reduced natural selective pressures caused by competition and drought compared to unthinned stands. However, the conventional thinning practice of retaining the larger trees resulted in indirect anthropogenic selection that enhanced genetic gain in vigour and lowered sensitivity by up to 30%. More intensive thinning aimed at reducing drought stress by reducing stand density hampered the selection against sensitivity to drought, potentially hindering long-term adaptation. Conversely, avoiding the early, nonselective thinning step—thereby promoting both natural and anthropogenic selection—ultimately resulted in better stand performance while maintaining long-term evolvability. This study emphasises the potential of evolution-oriented forestry strategies to combine drought stress mitigation with genetic adaptation. It provides general insights into how population management, disturbance regimes and eco-evolutionary responses interfere, aiding sustainable decision-making amid environmental uncertainties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Issue Information Genetic Architecture Underlying Response to the Fungal Pathogen Dothistroma septosporum in Lodgepole Pine, Jack Pine, and Their Hybrids Genomic Monitoring of a Reintroduced Butterfly Uncovers Contrasting Founder Lineage Survival Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.) Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1