Logan Norman, Hermann Geppert-Kleinrath, Kevin Meaney, Yongho Kim
{"title":"新型高频率、高带宽、三相马赫-泽恩德光数据链路。","authors":"Logan Norman, Hermann Geppert-Kleinrath, Kevin Meaney, Yongho Kim","doi":"10.1063/5.0230575","DOIUrl":null,"url":null,"abstract":"<p><p>In inertial confinement fusion, hydrogen isotopes are fused together under high pressures and temperatures. Typically, the duration of these experiments is incredibly short, on the order of around 60-150 ps. Due to the high radiation environment, a detector's signal is typically data linked far distances to a protected location. The diagnostic challenge for fusion reaction history measurements is to measure signals of interest maximizing dynamic range while also maintaining time resolution on the order of 10 ps. In this work, we present a new experimental optical data link used to efficiently transport diagnostic signals over great distances to the recording system while not restricting the dynamic range. The concept of a three phase Mach-Zehnder modulator system is introduced as well as a description of the physical prototype. The initial results from testing at the OMEGA facility show that this system is a viable method for signal transportation.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel high frequency, high bandwidth, three phase Mach-Zehnder optical data link.\",\"authors\":\"Logan Norman, Hermann Geppert-Kleinrath, Kevin Meaney, Yongho Kim\",\"doi\":\"10.1063/5.0230575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In inertial confinement fusion, hydrogen isotopes are fused together under high pressures and temperatures. Typically, the duration of these experiments is incredibly short, on the order of around 60-150 ps. Due to the high radiation environment, a detector's signal is typically data linked far distances to a protected location. The diagnostic challenge for fusion reaction history measurements is to measure signals of interest maximizing dynamic range while also maintaining time resolution on the order of 10 ps. In this work, we present a new experimental optical data link used to efficiently transport diagnostic signals over great distances to the recording system while not restricting the dynamic range. The concept of a three phase Mach-Zehnder modulator system is introduced as well as a description of the physical prototype. The initial results from testing at the OMEGA facility show that this system is a viable method for signal transportation.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"95 12\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230575\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0230575","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A novel high frequency, high bandwidth, three phase Mach-Zehnder optical data link.
In inertial confinement fusion, hydrogen isotopes are fused together under high pressures and temperatures. Typically, the duration of these experiments is incredibly short, on the order of around 60-150 ps. Due to the high radiation environment, a detector's signal is typically data linked far distances to a protected location. The diagnostic challenge for fusion reaction history measurements is to measure signals of interest maximizing dynamic range while also maintaining time resolution on the order of 10 ps. In this work, we present a new experimental optical data link used to efficiently transport diagnostic signals over great distances to the recording system while not restricting the dynamic range. The concept of a three phase Mach-Zehnder modulator system is introduced as well as a description of the physical prototype. The initial results from testing at the OMEGA facility show that this system is a viable method for signal transportation.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.