新型高频率、高带宽、三相马赫-泽恩德光数据链路。

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-12-01 DOI:10.1063/5.0230575
Logan Norman, Hermann Geppert-Kleinrath, Kevin Meaney, Yongho Kim
{"title":"新型高频率、高带宽、三相马赫-泽恩德光数据链路。","authors":"Logan Norman, Hermann Geppert-Kleinrath, Kevin Meaney, Yongho Kim","doi":"10.1063/5.0230575","DOIUrl":null,"url":null,"abstract":"<p><p>In inertial confinement fusion, hydrogen isotopes are fused together under high pressures and temperatures. Typically, the duration of these experiments is incredibly short, on the order of around 60-150 ps. Due to the high radiation environment, a detector's signal is typically data linked far distances to a protected location. The diagnostic challenge for fusion reaction history measurements is to measure signals of interest maximizing dynamic range while also maintaining time resolution on the order of 10 ps. In this work, we present a new experimental optical data link used to efficiently transport diagnostic signals over great distances to the recording system while not restricting the dynamic range. The concept of a three phase Mach-Zehnder modulator system is introduced as well as a description of the physical prototype. The initial results from testing at the OMEGA facility show that this system is a viable method for signal transportation.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel high frequency, high bandwidth, three phase Mach-Zehnder optical data link.\",\"authors\":\"Logan Norman, Hermann Geppert-Kleinrath, Kevin Meaney, Yongho Kim\",\"doi\":\"10.1063/5.0230575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In inertial confinement fusion, hydrogen isotopes are fused together under high pressures and temperatures. Typically, the duration of these experiments is incredibly short, on the order of around 60-150 ps. Due to the high radiation environment, a detector's signal is typically data linked far distances to a protected location. The diagnostic challenge for fusion reaction history measurements is to measure signals of interest maximizing dynamic range while also maintaining time resolution on the order of 10 ps. In this work, we present a new experimental optical data link used to efficiently transport diagnostic signals over great distances to the recording system while not restricting the dynamic range. The concept of a three phase Mach-Zehnder modulator system is introduced as well as a description of the physical prototype. The initial results from testing at the OMEGA facility show that this system is a viable method for signal transportation.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"95 12\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230575\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0230575","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel high frequency, high bandwidth, three phase Mach-Zehnder optical data link.

In inertial confinement fusion, hydrogen isotopes are fused together under high pressures and temperatures. Typically, the duration of these experiments is incredibly short, on the order of around 60-150 ps. Due to the high radiation environment, a detector's signal is typically data linked far distances to a protected location. The diagnostic challenge for fusion reaction history measurements is to measure signals of interest maximizing dynamic range while also maintaining time resolution on the order of 10 ps. In this work, we present a new experimental optical data link used to efficiently transport diagnostic signals over great distances to the recording system while not restricting the dynamic range. The concept of a three phase Mach-Zehnder modulator system is introduced as well as a description of the physical prototype. The initial results from testing at the OMEGA facility show that this system is a viable method for signal transportation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime. Analyzing the effects of reflections on optical diagnostics in the main chamber and divertor of WEST (invited). Application of tunneling magnetoresistance in electromagnetic tomography system construction. Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K. Design of a novel high-speed tensile method for testing the high strain rate tensile behavior of aluminum alloys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1