农村经济发展中基于云的可配置数据流处理架构。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-22 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2547
Haohao Chen, Fadi Al-Turjman
{"title":"农村经济发展中基于云的可配置数据流处理架构。","authors":"Haohao Chen, Fadi Al-Turjman","doi":"10.7717/peerj-cs.2547","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to address the limitations of traditional data processing methods in predicting agricultural product prices, which is essential for advancing rural informatization to enhance agricultural efficiency and support rural economic growth.</p><p><strong>Methodology: </strong>The RL-CNN-GRU framework combines reinforcement learning (RL), convolutional neural network (CNN), and gated recurrent unit (GRU) to improve agricultural price predictions using multidimensional time series data, including historical prices, weather, soil conditions, and other influencing factors. Initially, the model employs a 1D-CNN for feature extraction, followed by GRUs to capture temporal patterns in the data. Reinforcement learning further optimizes the model, enhancing the analysis and accuracy of multidimensional data inputs for more reliable price predictions.</p><p><strong>Results: </strong>Testing on public and proprietary datasets shows that the RL-CNN-GRU framework significantly outperforms traditional models in predicting prices, with lower mean squared error (MSE) and mean absolute error (MAE) metrics.</p><p><strong>Conclusion: </strong>The RL-CNN-GRU framework contributes to rural informatization by offering a more accurate prediction tool, thereby supporting improved decision-making in agricultural processes and fostering rural economic development.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2547"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cloud-based configurable data stream processing architecture in rural economic development.\",\"authors\":\"Haohao Chen, Fadi Al-Turjman\",\"doi\":\"10.7717/peerj-cs.2547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to address the limitations of traditional data processing methods in predicting agricultural product prices, which is essential for advancing rural informatization to enhance agricultural efficiency and support rural economic growth.</p><p><strong>Methodology: </strong>The RL-CNN-GRU framework combines reinforcement learning (RL), convolutional neural network (CNN), and gated recurrent unit (GRU) to improve agricultural price predictions using multidimensional time series data, including historical prices, weather, soil conditions, and other influencing factors. Initially, the model employs a 1D-CNN for feature extraction, followed by GRUs to capture temporal patterns in the data. Reinforcement learning further optimizes the model, enhancing the analysis and accuracy of multidimensional data inputs for more reliable price predictions.</p><p><strong>Results: </strong>Testing on public and proprietary datasets shows that the RL-CNN-GRU framework significantly outperforms traditional models in predicting prices, with lower mean squared error (MSE) and mean absolute error (MAE) metrics.</p><p><strong>Conclusion: </strong>The RL-CNN-GRU framework contributes to rural informatization by offering a more accurate prediction tool, thereby supporting improved decision-making in agricultural processes and fostering rural economic development.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2547\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2547\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2547","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

目的:解决传统数据处理方法在农产品价格预测中的局限性,这对推进农村信息化,提高农业效率,支持农村经济增长至关重要。方法:RL-CNN-GRU框架结合了强化学习(RL)、卷积神经网络(CNN)和门控循环单元(GRU),利用包括历史价格、天气、土壤条件和其他影响因素在内的多维时间序列数据来改进农产品价格预测。最初,该模型使用1D-CNN进行特征提取,然后使用gru捕获数据中的时间模式。强化学习进一步优化了模型,增强了多维数据输入的分析和准确性,从而实现更可靠的价格预测。结果:在公共和专有数据集上的测试表明,RL-CNN-GRU框架在预测价格方面明显优于传统模型,具有更低的均方误差(MSE)和平均绝对误差(MAE)指标。结论:RL-CNN-GRU框架通过提供更准确的预测工具来促进农村信息化,从而支持改进农业过程决策,促进农村经济发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud-based configurable data stream processing architecture in rural economic development.

Purpose: This study aims to address the limitations of traditional data processing methods in predicting agricultural product prices, which is essential for advancing rural informatization to enhance agricultural efficiency and support rural economic growth.

Methodology: The RL-CNN-GRU framework combines reinforcement learning (RL), convolutional neural network (CNN), and gated recurrent unit (GRU) to improve agricultural price predictions using multidimensional time series data, including historical prices, weather, soil conditions, and other influencing factors. Initially, the model employs a 1D-CNN for feature extraction, followed by GRUs to capture temporal patterns in the data. Reinforcement learning further optimizes the model, enhancing the analysis and accuracy of multidimensional data inputs for more reliable price predictions.

Results: Testing on public and proprietary datasets shows that the RL-CNN-GRU framework significantly outperforms traditional models in predicting prices, with lower mean squared error (MSE) and mean absolute error (MAE) metrics.

Conclusion: The RL-CNN-GRU framework contributes to rural informatization by offering a more accurate prediction tool, thereby supporting improved decision-making in agricultural processes and fostering rural economic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Applying auxiliary supervised depth-assisted transformer and cross modal attention fusion in monocular 3D object detection. Process mining applications in healthcare: a systematic literature review. Social media network public opinion emotion classification method based on multi-feature fusion and multi-scale hybrid neural network. Deep learning for enhanced risk management: a novel approach to analyzing financial reports. A comparative study of the performance of ten metaheuristic algorithms for parameter estimation of solar photovoltaic models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1