Shuai Wang, Lei Liu, Jun Wang, Xinyue Peng, Baosen Liu
{"title":"MSR-UNet:增强医学图像分割中的多尺度和远程依赖关系。","authors":"Shuai Wang, Lei Liu, Jun Wang, Xinyue Peng, Baosen Liu","doi":"10.7717/peerj-cs.2563","DOIUrl":null,"url":null,"abstract":"<p><p>Transformer-based technology has attracted widespread attention in medical image segmentation. Due to the diversity of organs, effective modelling of multi-scale information and establishing long-range dependencies between pixels are crucial for successful medical image segmentation. However, most studies rely on a fixed single-scale window for modeling, which ignores the potential impact of window size on performance. This limitation can hinder window-based models' ability to fully explore multi-scale and long-range relationships within medical images. To address this issue, we propose a multi-scale reconfiguration self-attention (MSR-SA) module that accurately models multi-scale information and long-range dependencies in medical images. The MSR-SA module first divides the attention heads into multiple groups, each assigned an ascending dilation rate. These groups are then uniformly split into several non-overlapping local windows. Using dilated sampling, we gather the same number of keys to obtain both long-range and multi-scale information. Finally, dynamic information fusion is achieved by integrating features from the sampling points at corresponding positions across different windows. Based on the MSR-SA module, we propose a multi-scale reconfiguration U-Net (MSR-UNet) framework for medical image segmentation. Experiments on the Synapse and automated cardiac diagnosis challenge (ACDC) datasets show that MSR-UNet can achieve satisfactory segmentation results. The code is available at https://github.com/davidsmithwj/MSR-UNet (DOI: 10.5281/zenodo.13969855).</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2563"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623095/pdf/","citationCount":"0","resultStr":"{\"title\":\"MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.\",\"authors\":\"Shuai Wang, Lei Liu, Jun Wang, Xinyue Peng, Baosen Liu\",\"doi\":\"10.7717/peerj-cs.2563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transformer-based technology has attracted widespread attention in medical image segmentation. Due to the diversity of organs, effective modelling of multi-scale information and establishing long-range dependencies between pixels are crucial for successful medical image segmentation. However, most studies rely on a fixed single-scale window for modeling, which ignores the potential impact of window size on performance. This limitation can hinder window-based models' ability to fully explore multi-scale and long-range relationships within medical images. To address this issue, we propose a multi-scale reconfiguration self-attention (MSR-SA) module that accurately models multi-scale information and long-range dependencies in medical images. The MSR-SA module first divides the attention heads into multiple groups, each assigned an ascending dilation rate. These groups are then uniformly split into several non-overlapping local windows. Using dilated sampling, we gather the same number of keys to obtain both long-range and multi-scale information. Finally, dynamic information fusion is achieved by integrating features from the sampling points at corresponding positions across different windows. Based on the MSR-SA module, we propose a multi-scale reconfiguration U-Net (MSR-UNet) framework for medical image segmentation. Experiments on the Synapse and automated cardiac diagnosis challenge (ACDC) datasets show that MSR-UNet can achieve satisfactory segmentation results. The code is available at https://github.com/davidsmithwj/MSR-UNet (DOI: 10.5281/zenodo.13969855).</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2563\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623095/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2563\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2563","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
Transformer-based technology has attracted widespread attention in medical image segmentation. Due to the diversity of organs, effective modelling of multi-scale information and establishing long-range dependencies between pixels are crucial for successful medical image segmentation. However, most studies rely on a fixed single-scale window for modeling, which ignores the potential impact of window size on performance. This limitation can hinder window-based models' ability to fully explore multi-scale and long-range relationships within medical images. To address this issue, we propose a multi-scale reconfiguration self-attention (MSR-SA) module that accurately models multi-scale information and long-range dependencies in medical images. The MSR-SA module first divides the attention heads into multiple groups, each assigned an ascending dilation rate. These groups are then uniformly split into several non-overlapping local windows. Using dilated sampling, we gather the same number of keys to obtain both long-range and multi-scale information. Finally, dynamic information fusion is achieved by integrating features from the sampling points at corresponding positions across different windows. Based on the MSR-SA module, we propose a multi-scale reconfiguration U-Net (MSR-UNet) framework for medical image segmentation. Experiments on the Synapse and automated cardiac diagnosis challenge (ACDC) datasets show that MSR-UNet can achieve satisfactory segmentation results. The code is available at https://github.com/davidsmithwj/MSR-UNet (DOI: 10.5281/zenodo.13969855).
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.