加快农业研发转移对全球粮食安全的影响。

IF 4.5 2区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Pub Date : 2024-12-31 Epub Date: 2024-12-09 DOI:10.1080/21645698.2024.2438419
Yan Jin, Zuzana Smeets Kristkova, Maximilian Kardung, Justus Wesseler
{"title":"加快农业研发转移对全球粮食安全的影响。","authors":"Yan Jin, Zuzana Smeets Kristkova, Maximilian Kardung, Justus Wesseler","doi":"10.1080/21645698.2024.2438419","DOIUrl":null,"url":null,"abstract":"<p><p>Postponing the adoption of genome editing (GE) is costly, with lengthy regulatory processes contributing to postponement. Accelerating agricultural research and development (R&D) transfer is important for stimulating sustainable agricultural transitions and enhancing global food security. Using the MAGNET model, we incorporate dynamic R&D accumulation and compare economic projections in scenarios with accelerated R&D transfer. We calculate the cost of delay (COD) from postponing GE adoption. The results show that accelerating R&D transfer in high-income countries impacts economic performance, welfare, and food affordability globally; the annuity of COD ranges from losses of -$1.1 billion (Brazil) to gains of $18.5 billion (Europe). A 3-year acceleration of R&D transfer in all countries benefits middle and low-income countries the most (e.g. China, India, other Asian countries, and Sub-Saharan African countries), with the annuity of COD ranging from -$4.8 billion (Brazil) to $83.9 billion (China). Therefore, streamlining the GE regulatory framework is essential for enhancing food security and global welfare.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"1-12"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633200/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impacts of accelerating agricultural R&D transfer on global food security.\",\"authors\":\"Yan Jin, Zuzana Smeets Kristkova, Maximilian Kardung, Justus Wesseler\",\"doi\":\"10.1080/21645698.2024.2438419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postponing the adoption of genome editing (GE) is costly, with lengthy regulatory processes contributing to postponement. Accelerating agricultural research and development (R&D) transfer is important for stimulating sustainable agricultural transitions and enhancing global food security. Using the MAGNET model, we incorporate dynamic R&D accumulation and compare economic projections in scenarios with accelerated R&D transfer. We calculate the cost of delay (COD) from postponing GE adoption. The results show that accelerating R&D transfer in high-income countries impacts economic performance, welfare, and food affordability globally; the annuity of COD ranges from losses of -$1.1 billion (Brazil) to gains of $18.5 billion (Europe). A 3-year acceleration of R&D transfer in all countries benefits middle and low-income countries the most (e.g. China, India, other Asian countries, and Sub-Saharan African countries), with the annuity of COD ranging from -$4.8 billion (Brazil) to $83.9 billion (China). Therefore, streamlining the GE regulatory framework is essential for enhancing food security and global welfare.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"15 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633200/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2024.2438419\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2024.2438419","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

推迟采用基因组编辑技术是代价高昂的,冗长的监管程序导致了推迟。加快农业研究与开发(R&D)转移对于促进可持续农业转型和加强全球粮食安全至关重要。利用MAGNET模型,我们考虑了动态研发积累,并比较了加速研发转移情景下的经济预测。我们计算了延迟通用电气采用的延迟成本(COD)。研究结果表明,高收入国家加速研发转移会影响全球经济绩效、福利和食品负担能力;COD年化损失从11亿美元(巴西)到185亿美元(欧洲)不等。所有国家的研发转移加速3年将使中低收入国家受益最多(如中国、印度、其他亚洲国家和撒哈拉以南非洲国家),其COD年化从48亿美元(巴西)到839亿美元(中国)不等。因此,简化转基因监管框架对于加强粮食安全和全球福利至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of accelerating agricultural R&D transfer on global food security.

Postponing the adoption of genome editing (GE) is costly, with lengthy regulatory processes contributing to postponement. Accelerating agricultural research and development (R&D) transfer is important for stimulating sustainable agricultural transitions and enhancing global food security. Using the MAGNET model, we incorporate dynamic R&D accumulation and compare economic projections in scenarios with accelerated R&D transfer. We calculate the cost of delay (COD) from postponing GE adoption. The results show that accelerating R&D transfer in high-income countries impacts economic performance, welfare, and food affordability globally; the annuity of COD ranges from losses of -$1.1 billion (Brazil) to gains of $18.5 billion (Europe). A 3-year acceleration of R&D transfer in all countries benefits middle and low-income countries the most (e.g. China, India, other Asian countries, and Sub-Saharan African countries), with the annuity of COD ranging from -$4.8 billion (Brazil) to $83.9 billion (China). Therefore, streamlining the GE regulatory framework is essential for enhancing food security and global welfare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
8.10
自引率
10.30%
发文量
22
期刊介绍: GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers. GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer. Topics covered include, but are not limited to: • Production and analysis of transgenic crops • Gene insertion studies • Gene silencing • Factors affecting gene expression • Post-translational analysis • Molecular farming • Field trial analysis • Commercialization of modified crops • Safety and regulatory affairs BIOLOGICAL SCIENCE AND TECHNOLOGY • Biofuels • Data from field trials • Development of transformation technology • Elimination of pollutants (Bioremediation) • Gene silencing mechanisms • Genome Editing • Herbicide resistance • Molecular farming • Pest resistance • Plant reproduction (e.g., male sterility, hybrid breeding, apomixis) • Plants with altered composition • Tolerance to abiotic stress • Transgenesis in agriculture • Biofortification and nutrients improvement • Genomic, proteomic and bioinformatics methods used for developing GM cops ECONOMIC, POLITICAL AND SOCIAL ISSUES • Commercialization • Consumer attitudes • International bodies • National and local government policies • Public perception, intellectual property, education, (bio)ethical issues • Regulation, environmental impact and containment • Socio-economic impact • Food safety and security • Risk assessments
期刊最新文献
Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. ZmNF-YB10, a maize NF-Y transcription factor, positively regulates drought and salt stress response in Arabidopsis thaliana. Research and developmental strategies to hasten the improvement of orphan crops. Expected profitability, independence, and risk assessment of small farmers in the wave of GM crop collectivization--evidence from Xinjiang and Guangdong. ClaPEPCK4: target gene for breeding innovative watermelon germplasm with low malic acid and high sweetness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1