事件驱动临床试验中盲法样本量重估的灵活样条模型。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-12-11 DOI:10.1002/pst.2459
Tim Mori, Sho Komukai, Satoshi Hattori, Tim Friede
{"title":"事件驱动临床试验中盲法样本量重估的灵活样条模型。","authors":"Tim Mori, Sho Komukai, Satoshi Hattori, Tim Friede","doi":"10.1002/pst.2459","DOIUrl":null,"url":null,"abstract":"<p><p>In event-driven trials, the target power under a certain treatment effect is maintained as long as the required number of events is obtained. The misspecification of the survival function in the planning phase does not result in a loss of power. However, the trial might take longer than planned if the event rate is lower than assumed. Blinded sample size reestimation (BSSR) uses non-comparative interim data to adjust the sample size if some planning assumptions are wrong. In the setting of an event-driven trial, the sample size may be adjusted to maintain the chances to obtain the required number of events within the planned time frame. For the purpose of BSSR, the survival function is estimated based on the interim data and often needs to be extrapolated. The current practice is to fit standard parametric models, which may however not always be suitable. Here we propose a flexible spline-based BSSR method. Specifically, we propose to carry out the extrapolation based on the Royston-Parmar spline model. To compare the proposed procedure with parametric approaches, we carried out a simulation study. Although parametric approaches might seriously over- or underestimate the expected number of events, the proposed flexible approach avoided such undesirable behavior. This is also observed in an application to a secondary progressive multiple sclerosis trial. Overall, if planning assumptions are wrong this more robust flexible BSSR method could help event-driven designs to more accurately adjust recruitment numbers and to finish on time.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Spline Models for Blinded Sample Size Reestimation in Event-Driven Clinical Trials.\",\"authors\":\"Tim Mori, Sho Komukai, Satoshi Hattori, Tim Friede\",\"doi\":\"10.1002/pst.2459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In event-driven trials, the target power under a certain treatment effect is maintained as long as the required number of events is obtained. The misspecification of the survival function in the planning phase does not result in a loss of power. However, the trial might take longer than planned if the event rate is lower than assumed. Blinded sample size reestimation (BSSR) uses non-comparative interim data to adjust the sample size if some planning assumptions are wrong. In the setting of an event-driven trial, the sample size may be adjusted to maintain the chances to obtain the required number of events within the planned time frame. For the purpose of BSSR, the survival function is estimated based on the interim data and often needs to be extrapolated. The current practice is to fit standard parametric models, which may however not always be suitable. Here we propose a flexible spline-based BSSR method. Specifically, we propose to carry out the extrapolation based on the Royston-Parmar spline model. To compare the proposed procedure with parametric approaches, we carried out a simulation study. Although parametric approaches might seriously over- or underestimate the expected number of events, the proposed flexible approach avoided such undesirable behavior. This is also observed in an application to a secondary progressive multiple sclerosis trial. Overall, if planning assumptions are wrong this more robust flexible BSSR method could help event-driven designs to more accurately adjust recruitment numbers and to finish on time.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2459\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2459","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在事件驱动试验中,只要获得所需的事件数,就能维持一定治疗效果下的目标功率。在计划阶段对生存功能的错误说明不会导致功率的损失。然而,如果事件发生率低于假设,试验可能需要比计划更长的时间。盲法样本量重估(BSSR)是利用非比较性的中间数据来调整某些规划假设错误时的样本量。在事件驱动试验的设置中,可以调整样本量,以保持在计划时间范围内获得所需事件数量的机会。对于BSSR而言,生存函数是基于中期数据估计的,通常需要外推。目前的做法是拟合标准参数模型,但这可能并不总是合适的。本文提出了一种基于灵活样条的BSSR方法。具体而言,我们建议基于Royston-Parmar样条模型进行外推。为了与参数化方法进行比较,我们进行了仿真研究。尽管参数化方法可能严重高估或低估预期的事件数量,但所提出的灵活方法避免了这种不良行为。在继发性进展性多发性硬化试验中也观察到这一点。总的来说,如果计划假设是错误的,这种更健壮灵活的BSSR方法可以帮助事件驱动的设计更准确地调整招聘数量并按时完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible Spline Models for Blinded Sample Size Reestimation in Event-Driven Clinical Trials.

In event-driven trials, the target power under a certain treatment effect is maintained as long as the required number of events is obtained. The misspecification of the survival function in the planning phase does not result in a loss of power. However, the trial might take longer than planned if the event rate is lower than assumed. Blinded sample size reestimation (BSSR) uses non-comparative interim data to adjust the sample size if some planning assumptions are wrong. In the setting of an event-driven trial, the sample size may be adjusted to maintain the chances to obtain the required number of events within the planned time frame. For the purpose of BSSR, the survival function is estimated based on the interim data and often needs to be extrapolated. The current practice is to fit standard parametric models, which may however not always be suitable. Here we propose a flexible spline-based BSSR method. Specifically, we propose to carry out the extrapolation based on the Royston-Parmar spline model. To compare the proposed procedure with parametric approaches, we carried out a simulation study. Although parametric approaches might seriously over- or underestimate the expected number of events, the proposed flexible approach avoided such undesirable behavior. This is also observed in an application to a secondary progressive multiple sclerosis trial. Overall, if planning assumptions are wrong this more robust flexible BSSR method could help event-driven designs to more accurately adjust recruitment numbers and to finish on time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
A Commensurate Prior Model With Random Effects for Survival and Competing Risk Outcomes to Accommodate Historical Controls. Bayesian Sample Size Calculation in Small n, Sequential Multiple Assignment Randomized Trials (snSMART). Taylor Series Approximation for Accurate Generalized Confidence Intervals of Ratios of Log-Normal Standard Deviations for Meta-Analysis Using Means and Standard Deviations in Time Scale. A Bayesian Hybrid Design With Borrowing From Historical Study. WATCH: A Workflow to Assess Treatment Effect Heterogeneity in Drug Development for Clinical Trial Sponsors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1