Kai Ye, Haoteng Tang, Siyuan Dai, Igor Fortel, Paul M Thompson, R Scott Mackin, Alex Leow, Heng Huang, Liang Zhan
{"title":"用于可靠脑成像分析的脑后证据网络。","authors":"Kai Ye, Haoteng Tang, Siyuan Dai, Igor Fortel, Paul M Thompson, R Scott Mackin, Alex Leow, Heng Huang, Liang Zhan","doi":"10.1016/j.neunet.2024.106943","DOIUrl":null,"url":null,"abstract":"<p><p>The application of deep learning techniques to analyze brain functional magnetic resonance imaging (fMRI) data has led to significant advancements in identifying prospective biomarkers associated with various clinical phenotypes and neurological conditions. Despite these achievements, the aspect of prediction uncertainty has been relatively underexplored in brain fMRI data analysis. Accurate uncertainty estimation is essential for trustworthy learning, given the challenges associated with brain fMRI data acquisition and the potential diagnostic implications for patients. To address this gap, we introduce a novel posterior evidential network, named the Brain Posterior Evidential Network (BPEN), designed to capture both aleatoric and epistemic uncertainty in the analysis of brain fMRI data. We conducted comprehensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and ADNI-depression (ADNI-D) cohorts, focusing on predictions for mild cognitive impairment (MCI) and depression across various diagnostic groups. Our experiments not only unequivocally demonstrate the superior predictive performance of our BPEN model compared to existing state-of-the-art methods but also underscore the importance of uncertainty estimation in predictive models.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106943"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750605/pdf/","citationCount":"0","resultStr":"{\"title\":\"BPEN: Brain Posterior Evidential Network for trustworthy brain imaging analysis.\",\"authors\":\"Kai Ye, Haoteng Tang, Siyuan Dai, Igor Fortel, Paul M Thompson, R Scott Mackin, Alex Leow, Heng Huang, Liang Zhan\",\"doi\":\"10.1016/j.neunet.2024.106943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of deep learning techniques to analyze brain functional magnetic resonance imaging (fMRI) data has led to significant advancements in identifying prospective biomarkers associated with various clinical phenotypes and neurological conditions. Despite these achievements, the aspect of prediction uncertainty has been relatively underexplored in brain fMRI data analysis. Accurate uncertainty estimation is essential for trustworthy learning, given the challenges associated with brain fMRI data acquisition and the potential diagnostic implications for patients. To address this gap, we introduce a novel posterior evidential network, named the Brain Posterior Evidential Network (BPEN), designed to capture both aleatoric and epistemic uncertainty in the analysis of brain fMRI data. We conducted comprehensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and ADNI-depression (ADNI-D) cohorts, focusing on predictions for mild cognitive impairment (MCI) and depression across various diagnostic groups. Our experiments not only unequivocally demonstrate the superior predictive performance of our BPEN model compared to existing state-of-the-art methods but also underscore the importance of uncertainty estimation in predictive models.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106943\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750605/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106943\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106943","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
BPEN: Brain Posterior Evidential Network for trustworthy brain imaging analysis.
The application of deep learning techniques to analyze brain functional magnetic resonance imaging (fMRI) data has led to significant advancements in identifying prospective biomarkers associated with various clinical phenotypes and neurological conditions. Despite these achievements, the aspect of prediction uncertainty has been relatively underexplored in brain fMRI data analysis. Accurate uncertainty estimation is essential for trustworthy learning, given the challenges associated with brain fMRI data acquisition and the potential diagnostic implications for patients. To address this gap, we introduce a novel posterior evidential network, named the Brain Posterior Evidential Network (BPEN), designed to capture both aleatoric and epistemic uncertainty in the analysis of brain fMRI data. We conducted comprehensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and ADNI-depression (ADNI-D) cohorts, focusing on predictions for mild cognitive impairment (MCI) and depression across various diagnostic groups. Our experiments not only unequivocally demonstrate the superior predictive performance of our BPEN model compared to existing state-of-the-art methods but also underscore the importance of uncertainty estimation in predictive models.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.