ATOM:面向无服务器边缘计算环境的人工智能可持续资源管理

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2023-12-29 DOI:10.1109/TSUSC.2023.3348157
Muhammed Golec;Sukhpal Singh Gill;Felix Cuadrado;Ajith Kumar Parlikad;Minxian Xu;Huaming Wu;Steve Uhlig
{"title":"ATOM:面向无服务器边缘计算环境的人工智能可持续资源管理","authors":"Muhammed Golec;Sukhpal Singh Gill;Felix Cuadrado;Ajith Kumar Parlikad;Minxian Xu;Huaming Wu;Steve Uhlig","doi":"10.1109/TSUSC.2023.3348157","DOIUrl":null,"url":null,"abstract":"Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and \n<inline-formula><tex-math>$CO_{2}$</tex-math></inline-formula>\n emission amount of these models are evaluated and compared for the training and prediction phases.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"817-829"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATOM: AI-Powered Sustainable Resource Management for Serverless Edge Computing Environments\",\"authors\":\"Muhammed Golec;Sukhpal Singh Gill;Felix Cuadrado;Ajith Kumar Parlikad;Minxian Xu;Huaming Wu;Steve Uhlig\",\"doi\":\"10.1109/TSUSC.2023.3348157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and \\n<inline-formula><tex-math>$CO_{2}$</tex-math></inline-formula>\\n emission amount of these models are evaluated and compared for the training and prediction phases.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 6\",\"pages\":\"817-829\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10376318/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10376318/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

无服务器边缘计算减少了在处理能力和存储容量有限的终端设备上不必要的资源使用。尽管有好处,但无服务器边缘计算的零可扩展性是冷启动延迟的主要原因,这一问题尚未解决。对于自动驾驶汽车等对时间敏感的物联网(IoT)应用程序来说,这种延迟是不可接受的。大多数现有的方法都需要容器来闲置和使用额外的计算资源。边缘设备比基于云的系统拥有更少的资源,需要新的可持续解决方案。因此,我们提出了一个人工智能驱动的可持续资源管理框架,称为ATOM,用于无服务器边缘计算。ATOM利用深度强化学习模型来准确预测何时会发生冷启动延迟。我们使用心脏病风险场景创建冷启动数据集,并使用谷歌云功能进行部署。为了证明ATOM的优越性,比较了使用热启动容器和两层自适应方法的两种不同基准的性能。实验结果表明,虽然ATOM需要118.76秒的计算时间,但其预测冷启动的RMSE比基线模型要好,RMSE值为148.76。此外,在训练阶段和预测阶段对这些模型的能耗和二氧化碳排放量进行了评价和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATOM: AI-Powered Sustainable Resource Management for Serverless Edge Computing Environments
Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and $CO_{2}$ emission amount of these models are evaluated and compared for the training and prediction phases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Guest Editorial of the Special Section on AI Powered Edge Computing for IoT Editorial Addressing Concept Drift in IoT Anomaly Detection: Drift Detection, Interpretation, and Adaptation Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach Staged Noise Perturbation for Privacy-Preserving Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1