高温应用Fe-Cr-Ni单晶合金蠕变退化的预测:分子动力学和机器学习方法

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Mechanics of Time-Dependent Materials Pub Date : 2024-12-11 DOI:10.1007/s11043-024-09745-w
Arun Kumar, Sunil Kumar, Ashok Kumar, Sanjay Sharma
{"title":"高温应用Fe-Cr-Ni单晶合金蠕变退化的预测:分子动力学和机器学习方法","authors":"Arun Kumar,&nbsp;Sunil Kumar,&nbsp;Ashok Kumar,&nbsp;Sanjay Sharma","doi":"10.1007/s11043-024-09745-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the creep-deformation behavior of Fe-Cr-Ni single-crystal alloys, a crucial factor in the longevity and safety of materials in high-temperature applications. Using molecular-dynamics (MD) simulations, we generate the creep-strain data on the creep behavior of Fe-Cr-Ni single-crystal alloy. To predict creep curves under various temperatures and stress conditions, we employ random forest (RF) and convolutional neural network (CNN) models. These models are trained, tested, and validated on creep data at 300 K, 750 K, 950 K, and 1150 K, achieving deviations within 20% of simulation values. The RF model demonstrates strong predictive capabilities, with correlation coefficients of 0.96, 0.96, 0.94, and 0.98 at the respective temperatures. In contrast, the CNN model shows correlation coefficients of 0.92, 0.99, 0.99, and 0.99. The results of this investigation show that both models are capable of accurately predicting creep behavior. As compared to the CNN model, which performs better at higher temperatures and with larger datasets, the RF model works better at lower temperatures and with smaller datasets. These results enhance our understanding of creep properties and improve predictive modeling under varying conditions.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of creep degradation in Fe-Cr-Ni single-crystal alloys for high-temperature applications: a molecular-dynamics and machine-learning approach\",\"authors\":\"Arun Kumar,&nbsp;Sunil Kumar,&nbsp;Ashok Kumar,&nbsp;Sanjay Sharma\",\"doi\":\"10.1007/s11043-024-09745-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the creep-deformation behavior of Fe-Cr-Ni single-crystal alloys, a crucial factor in the longevity and safety of materials in high-temperature applications. Using molecular-dynamics (MD) simulations, we generate the creep-strain data on the creep behavior of Fe-Cr-Ni single-crystal alloy. To predict creep curves under various temperatures and stress conditions, we employ random forest (RF) and convolutional neural network (CNN) models. These models are trained, tested, and validated on creep data at 300 K, 750 K, 950 K, and 1150 K, achieving deviations within 20% of simulation values. The RF model demonstrates strong predictive capabilities, with correlation coefficients of 0.96, 0.96, 0.94, and 0.98 at the respective temperatures. In contrast, the CNN model shows correlation coefficients of 0.92, 0.99, 0.99, and 0.99. The results of this investigation show that both models are capable of accurately predicting creep behavior. As compared to the CNN model, which performs better at higher temperatures and with larger datasets, the RF model works better at lower temperatures and with smaller datasets. These results enhance our understanding of creep properties and improve predictive modeling under varying conditions.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09745-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09745-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了Fe-Cr-Ni单晶合金的蠕变变形行为,这是材料在高温应用中使用寿命和安全性的关键因素。采用分子动力学(MD)方法模拟了Fe-Cr-Ni单晶合金蠕变行为的蠕变应变数据。为了预测不同温度和应力条件下的蠕变曲线,我们采用随机森林(RF)和卷积神经网络(CNN)模型。这些模型在300 K、750 K、950 K和1150 K的蠕变数据上进行了训练、测试和验证,偏差在模拟值的20%以内。RF模型具有较强的预测能力,在不同温度下相关系数分别为0.96、0.96、0.94和0.98。而CNN模型的相关系数分别为0.92、0.99、0.99、0.99。研究结果表明,这两种模型都能准确地预测蠕变行为。CNN模型在较高温度和较大数据集下表现更好,而RF模型在较低温度和较小数据集下表现更好。这些结果增强了我们对蠕变特性的理解,并改进了不同条件下的预测建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of creep degradation in Fe-Cr-Ni single-crystal alloys for high-temperature applications: a molecular-dynamics and machine-learning approach

In this paper, we investigate the creep-deformation behavior of Fe-Cr-Ni single-crystal alloys, a crucial factor in the longevity and safety of materials in high-temperature applications. Using molecular-dynamics (MD) simulations, we generate the creep-strain data on the creep behavior of Fe-Cr-Ni single-crystal alloy. To predict creep curves under various temperatures and stress conditions, we employ random forest (RF) and convolutional neural network (CNN) models. These models are trained, tested, and validated on creep data at 300 K, 750 K, 950 K, and 1150 K, achieving deviations within 20% of simulation values. The RF model demonstrates strong predictive capabilities, with correlation coefficients of 0.96, 0.96, 0.94, and 0.98 at the respective temperatures. In contrast, the CNN model shows correlation coefficients of 0.92, 0.99, 0.99, and 0.99. The results of this investigation show that both models are capable of accurately predicting creep behavior. As compared to the CNN model, which performs better at higher temperatures and with larger datasets, the RF model works better at lower temperatures and with smaller datasets. These results enhance our understanding of creep properties and improve predictive modeling under varying conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
期刊最新文献
Nanoindentation loading rate sensitivity of the mechanical behavior of cured isotropic conductive adhesives Nonlinear relaxation behavior and competing aging mechanisms in GAP-based propellants under thermal aging Evaluation of properties in bitumen insulation by impact microindentation on the base of rheological models Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers Thermo-mechanical response of an elastomeric isolation system using real-time hybrid simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1