{"title":"意大利地震规范中土壤因素的可能测量","authors":"Dario Albarello, Enrico Paolucci","doi":"10.1007/s10518-024-02021-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Italian seismic code provides a simplified approach to account for the effect of local seismostratigraphical configuration on the expected ground motion. This approach, common with other seismic codes, provides specific ‘soil factors’ as a function of a set of reference subsoil conditions (soil classes): these factors are considered in 1D subsoil configurations to modify the uniform probability hazard spectrum deduced from probabilistic seismic hazard at reference soil conditions. It is inferred that, to provide a coherent management of uncertainty affecting the response spectrum to be used for the design, the contribution of uncertainty affecting soil factors must be carefully considered to avoid biases in the hazard evaluation. In the present study, variability of soil factors representative of each soil class has been explored by numerical simulation relative to many seismostratigraphical configurations inferred from seismic microzonation studies available in Italy relative to 1689 municipalities. This analysis shows that variability of soil factors is of the same order of magnitude of variability affecting reference response spectra, which implies that the former cannot be neglected as presently happens in the common practice. It is also shown that neglecting this contribution can lead to underestimate the impact of subsoil configuration on the regularized response spectrum provided by the norm, in particular, in the short period range.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7299 - 7321"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02021-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Possible measure of soil factors in the Italian seismic code\",\"authors\":\"Dario Albarello, Enrico Paolucci\",\"doi\":\"10.1007/s10518-024-02021-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Italian seismic code provides a simplified approach to account for the effect of local seismostratigraphical configuration on the expected ground motion. This approach, common with other seismic codes, provides specific ‘soil factors’ as a function of a set of reference subsoil conditions (soil classes): these factors are considered in 1D subsoil configurations to modify the uniform probability hazard spectrum deduced from probabilistic seismic hazard at reference soil conditions. It is inferred that, to provide a coherent management of uncertainty affecting the response spectrum to be used for the design, the contribution of uncertainty affecting soil factors must be carefully considered to avoid biases in the hazard evaluation. In the present study, variability of soil factors representative of each soil class has been explored by numerical simulation relative to many seismostratigraphical configurations inferred from seismic microzonation studies available in Italy relative to 1689 municipalities. This analysis shows that variability of soil factors is of the same order of magnitude of variability affecting reference response spectra, which implies that the former cannot be neglected as presently happens in the common practice. It is also shown that neglecting this contribution can lead to underestimate the impact of subsoil configuration on the regularized response spectrum provided by the norm, in particular, in the short period range.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 15\",\"pages\":\"7299 - 7321\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-02021-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-02021-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02021-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Possible measure of soil factors in the Italian seismic code
The Italian seismic code provides a simplified approach to account for the effect of local seismostratigraphical configuration on the expected ground motion. This approach, common with other seismic codes, provides specific ‘soil factors’ as a function of a set of reference subsoil conditions (soil classes): these factors are considered in 1D subsoil configurations to modify the uniform probability hazard spectrum deduced from probabilistic seismic hazard at reference soil conditions. It is inferred that, to provide a coherent management of uncertainty affecting the response spectrum to be used for the design, the contribution of uncertainty affecting soil factors must be carefully considered to avoid biases in the hazard evaluation. In the present study, variability of soil factors representative of each soil class has been explored by numerical simulation relative to many seismostratigraphical configurations inferred from seismic microzonation studies available in Italy relative to 1689 municipalities. This analysis shows that variability of soil factors is of the same order of magnitude of variability affecting reference response spectra, which implies that the former cannot be neglected as presently happens in the common practice. It is also shown that neglecting this contribution can lead to underestimate the impact of subsoil configuration on the regularized response spectrum provided by the norm, in particular, in the short period range.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.