长寿命可充电铝电池用掺硒碳包覆Cu2Se蛋黄壳结构的构建。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-06 DOI:10.1016/j.jcis.2024.12.023
Gangyong Li, Siping Li, Zhi Li, Chen Li, Zhaodi Wang, Huan Li, Rui Chen, Miao Zhou, Bao Zhang, Zhaohui Hou
{"title":"长寿命可充电铝电池用掺硒碳包覆Cu2Se蛋黄壳结构的构建。","authors":"Gangyong Li, Siping Li, Zhi Li, Chen Li, Zhaodi Wang, Huan Li, Rui Chen, Miao Zhou, Bao Zhang, Zhaohui Hou","doi":"10.1016/j.jcis.2024.12.023","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable aluminum batteries (RABs) are promising alternatives to lithium-ion batteries in large-scale energy storage applications owing to the abundance of their raw materials and high safety. However, achieving high energy density and long cycling life simultaneously holds great challenges for RABs, especially for high capacity transition metal selenide (TMS)-based positive materials suffering from structural collapse and dissolution in acidic ionic liquid electrolyte. Herein, Se-doped carbon encapsulated Cu<sub>2</sub>Se with yolk-shell structure (YS/Se-C@Cu<sub>2</sub>Se) is rationally constructed to address such issues. Electrochemical and spectroscopic analyses as well as density functional theory calculations show that the highly conductive Se-C shell enhances the electrochemical reaction kinetics of the electrode and provides strong adsorption for the soluble Cu and Se species. Benefiting from these merits, the optimal YS/Se-C@Cu<sub>2</sub>Se cathode manifests a high specific capacity of 1024.2 mAh/g at 0.2 A/g, a superior rate capability of 240.5 mAh/g at 3.2 A/g, and a long-term cycling stability over 2500 cycles. This work offers a feasible approach to the design and construction of low-cost and efficient TMS-based positive materials for realizing practically usable RABs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1062-1072"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Se-doped carbon encapsulated Cu<sub>2</sub>Se yolk-shell structure for long-life rechargeable aluminum batteries.\",\"authors\":\"Gangyong Li, Siping Li, Zhi Li, Chen Li, Zhaodi Wang, Huan Li, Rui Chen, Miao Zhou, Bao Zhang, Zhaohui Hou\",\"doi\":\"10.1016/j.jcis.2024.12.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rechargeable aluminum batteries (RABs) are promising alternatives to lithium-ion batteries in large-scale energy storage applications owing to the abundance of their raw materials and high safety. However, achieving high energy density and long cycling life simultaneously holds great challenges for RABs, especially for high capacity transition metal selenide (TMS)-based positive materials suffering from structural collapse and dissolution in acidic ionic liquid electrolyte. Herein, Se-doped carbon encapsulated Cu<sub>2</sub>Se with yolk-shell structure (YS/Se-C@Cu<sub>2</sub>Se) is rationally constructed to address such issues. Electrochemical and spectroscopic analyses as well as density functional theory calculations show that the highly conductive Se-C shell enhances the electrochemical reaction kinetics of the electrode and provides strong adsorption for the soluble Cu and Se species. Benefiting from these merits, the optimal YS/Se-C@Cu<sub>2</sub>Se cathode manifests a high specific capacity of 1024.2 mAh/g at 0.2 A/g, a superior rate capability of 240.5 mAh/g at 3.2 A/g, and a long-term cycling stability over 2500 cycles. This work offers a feasible approach to the design and construction of low-cost and efficient TMS-based positive materials for realizing practically usable RABs.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"682 \",\"pages\":\"1062-1072\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电铝电池(RABs)由于其原料丰富且安全性高,在大规模储能应用中有望取代锂离子电池。然而,同时实现高能量密度和长循环寿命对RABs来说是一个巨大的挑战,特别是对于高容量过渡金属硒化物(TMS)基正极材料,在酸性离子液体电解质中存在结构崩溃和溶解的问题。为了解决这一问题,我们合理构建了具有蛋黄壳结构的掺杂硒碳包覆Cu2Se (YS/Se-C@Cu2Se)。电化学和光谱分析以及密度泛函理论计算表明,高导电性的Se- c壳增强了电极的电化学反应动力学,并对可溶性Cu和Se提供了强吸附。得益于这些优点,最佳的YS/Se-C@Cu2Se阴极在0.2 a /g时具有1024.2 mAh/g的高比容量,在3.2 a /g时具有240.5 mAh/g的优越倍率能力,并且具有超过2500次循环的长期稳定性。本工作为设计和构建低成本、高效的tms基正极材料,实现实际可用的RABs提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of Se-doped carbon encapsulated Cu2Se yolk-shell structure for long-life rechargeable aluminum batteries.

Rechargeable aluminum batteries (RABs) are promising alternatives to lithium-ion batteries in large-scale energy storage applications owing to the abundance of their raw materials and high safety. However, achieving high energy density and long cycling life simultaneously holds great challenges for RABs, especially for high capacity transition metal selenide (TMS)-based positive materials suffering from structural collapse and dissolution in acidic ionic liquid electrolyte. Herein, Se-doped carbon encapsulated Cu2Se with yolk-shell structure (YS/Se-C@Cu2Se) is rationally constructed to address such issues. Electrochemical and spectroscopic analyses as well as density functional theory calculations show that the highly conductive Se-C shell enhances the electrochemical reaction kinetics of the electrode and provides strong adsorption for the soluble Cu and Se species. Benefiting from these merits, the optimal YS/Se-C@Cu2Se cathode manifests a high specific capacity of 1024.2 mAh/g at 0.2 A/g, a superior rate capability of 240.5 mAh/g at 3.2 A/g, and a long-term cycling stability over 2500 cycles. This work offers a feasible approach to the design and construction of low-cost and efficient TMS-based positive materials for realizing practically usable RABs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production. Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction. In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery. In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors. Floating BiOBr/Ti3C2 aerogel spheres for efficient degradation of quinolone antibiotics: Rapid oxygen transfer via triphase interface and effective charges separation by internal electric field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1