具有垂直磁各向异性的亚稳体心立方comfe合金薄膜。

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Advanced Materials Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.1080/14686996.2024.2421746
Deepak Kumar, Mio Ishibashi, Tufan Roy, Masahito Tsujikawa, Masafumi Shirai, Shigemi Mizukami
{"title":"具有垂直磁各向异性的亚稳体心立方comfe合金薄膜。","authors":"Deepak Kumar, Mio Ishibashi, Tufan Roy, Masahito Tsujikawa, Masafumi Shirai, Shigemi Mizukami","doi":"10.1080/14686996.2024.2421746","DOIUrl":null,"url":null,"abstract":"<p><p>A body-centered cubic (bcc) FeCo(B) is a current standard magnetic material for perpendicular magnetic tunnel junctions (<i>p</i>-MTJs) showing both large tunnel magnetoresistance (TMR) and high interfacial perpendicular magnetic anisotropy (PMA) when MgO is utilized as a barrier material of <i>p</i>-MTJs. Since the <i>p</i>-MTJ is a key device of current spintronics memory, <i>i.e</i>. spin-transfer-torque magnetoresistive random access memory (STT-MRAM), it attracts attention for further advance to explore new magnetic materials showing both large PMA and TMR. However, there have been no such materials other than FeCo(B)/MgO. Here, we report, for the first time, PMA in metastable bcc Co-based alloy, <i>i.e</i>. bcc CoMnFe thin films which are known to exhibit large TMR effect when used for electrodes of MTJs with the MgO barrier. The largest intrinsic PMAs were about 0.6 and 0.8 MJ/m<sup>3</sup> in a few nanometer-thick CoMnFe alloy film and multilayer film, respectively. Our <i>ab-initio</i> calculation suggested that PMA originates from tetragonal strain and the value exceeds 1 MJ/m<sup>3</sup> with optimizing strain and alloys composition. The simulation of the thermal stability factor indicates that the magnetic properties obtained satisfy the requirement of the data retention performance of <i>X</i>-1<i>X</i> nm STT-MRAM. The large PMA and high TMR effect in bcc CoMnFe/MgO, which were rarely observed in materials other than FeCo(B)/MgO, indicate that bcc CoMnFe/MgO is one of the potential candidates of the materials for <i>X</i>-1<i>X</i> nm STT-MRAM.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2421746"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metastable body-centered cubic CoMnFe alloy films with perpendicular magnetic anisotropy for spintronics memory.\",\"authors\":\"Deepak Kumar, Mio Ishibashi, Tufan Roy, Masahito Tsujikawa, Masafumi Shirai, Shigemi Mizukami\",\"doi\":\"10.1080/14686996.2024.2421746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A body-centered cubic (bcc) FeCo(B) is a current standard magnetic material for perpendicular magnetic tunnel junctions (<i>p</i>-MTJs) showing both large tunnel magnetoresistance (TMR) and high interfacial perpendicular magnetic anisotropy (PMA) when MgO is utilized as a barrier material of <i>p</i>-MTJs. Since the <i>p</i>-MTJ is a key device of current spintronics memory, <i>i.e</i>. spin-transfer-torque magnetoresistive random access memory (STT-MRAM), it attracts attention for further advance to explore new magnetic materials showing both large PMA and TMR. However, there have been no such materials other than FeCo(B)/MgO. Here, we report, for the first time, PMA in metastable bcc Co-based alloy, <i>i.e</i>. bcc CoMnFe thin films which are known to exhibit large TMR effect when used for electrodes of MTJs with the MgO barrier. The largest intrinsic PMAs were about 0.6 and 0.8 MJ/m<sup>3</sup> in a few nanometer-thick CoMnFe alloy film and multilayer film, respectively. Our <i>ab-initio</i> calculation suggested that PMA originates from tetragonal strain and the value exceeds 1 MJ/m<sup>3</sup> with optimizing strain and alloys composition. The simulation of the thermal stability factor indicates that the magnetic properties obtained satisfy the requirement of the data retention performance of <i>X</i>-1<i>X</i> nm STT-MRAM. The large PMA and high TMR effect in bcc CoMnFe/MgO, which were rarely observed in materials other than FeCo(B)/MgO, indicate that bcc CoMnFe/MgO is one of the potential candidates of the materials for <i>X</i>-1<i>X</i> nm STT-MRAM.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2421746\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2421746\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2421746","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

体心立方(bcc) FeCo(B)是目前用于垂直磁隧道结(p-MTJs)的标准磁性材料,当MgO用作p-MTJs的势垒材料时,它具有大的隧道磁电阻(TMR)和高的界面垂直磁各向异性(PMA)。由于p-MTJ是当前自旋电子学存储器即自旋传递转矩磁阻随机存取存储器(STT-MRAM)的关键器件,因此探索既具有大PMA又具有大TMR的新型磁性材料是进一步研究的热点。但是,除了FeCo(B)/MgO之外,还没有这样的材料。在这里,我们首次报道了亚稳bcc co基合金中的PMA,即bcc CoMnFe薄膜,当用于具有MgO势垒的MTJs电极时,已知会表现出很大的TMR效应。在几纳米厚的comfe合金膜和多层膜中,最大的本特征pma分别为0.6和0.8 MJ/m3。我们的ab-initio计算表明,PMA来源于四方应变,优化应变和合金成分后PMA值超过1 MJ/m3。热稳定因子的模拟表明,所获得的磁性能满足X-1X nm STT-MRAM的数据保留性能要求。bcc CoMnFe/MgO中较大的PMA和较高的TMR效应在FeCo(B)/MgO以外的材料中很少观察到,这表明bcc CoMnFe/MgO是X-1X nm STT-MRAM的潜在候选材料之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metastable body-centered cubic CoMnFe alloy films with perpendicular magnetic anisotropy for spintronics memory.

A body-centered cubic (bcc) FeCo(B) is a current standard magnetic material for perpendicular magnetic tunnel junctions (p-MTJs) showing both large tunnel magnetoresistance (TMR) and high interfacial perpendicular magnetic anisotropy (PMA) when MgO is utilized as a barrier material of p-MTJs. Since the p-MTJ is a key device of current spintronics memory, i.e. spin-transfer-torque magnetoresistive random access memory (STT-MRAM), it attracts attention for further advance to explore new magnetic materials showing both large PMA and TMR. However, there have been no such materials other than FeCo(B)/MgO. Here, we report, for the first time, PMA in metastable bcc Co-based alloy, i.e. bcc CoMnFe thin films which are known to exhibit large TMR effect when used for electrodes of MTJs with the MgO barrier. The largest intrinsic PMAs were about 0.6 and 0.8 MJ/m3 in a few nanometer-thick CoMnFe alloy film and multilayer film, respectively. Our ab-initio calculation suggested that PMA originates from tetragonal strain and the value exceeds 1 MJ/m3 with optimizing strain and alloys composition. The simulation of the thermal stability factor indicates that the magnetic properties obtained satisfy the requirement of the data retention performance of X-1X nm STT-MRAM. The large PMA and high TMR effect in bcc CoMnFe/MgO, which were rarely observed in materials other than FeCo(B)/MgO, indicate that bcc CoMnFe/MgO is one of the potential candidates of the materials for X-1X nm STT-MRAM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
期刊最新文献
Effect of P-doped bimetallic FeCo catalysts on a carbon matrix for oxygen reduction in alkaline media. Spin Hall magnetoresistance and spin Seebeck effect in Pt |CoCr2O4 heterostructures. Interplay between vacancy-induced hydrogen segregation and stress-induced vacancy redistribution causing embrittlement of alpha-iron. Electrochemical and chemical dealloying of nanoporous anode materials for energy storage applications. Machine learning approaches for predicting and validating mechanical properties of Mg rare earth alloys for light weight applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1