Lu Zeng, Li Wen, Yang Jing, Jing-Xu Xu, Chen-Cui Huang, Dong Zhang, Guang-Xian Wang
{"title":"基于计算机断层血管造影的深度学习模型评估颅内动脉瘤的稳定性。","authors":"Lu Zeng, Li Wen, Yang Jing, Jing-Xu Xu, Chen-Cui Huang, Dong Zhang, Guang-Xian Wang","doi":"10.1007/s11547-024-01939-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Assessment of the stability of intracranial aneurysms is important in the clinic but remains challenging. The aim of this study was to construct a deep learning model (DLM) to identify unstable aneurysms on computed tomography angiography (CTA) images.</p><p><strong>Methods: </strong>The clinical data of 1041 patients with 1227 aneurysms were retrospectively analyzed from August 2011 to May 2021. Patients with aneurysms were divided into unstable (ruptured, evolving and symptomatic aneurysms) and stable (fortuitous, nonevolving and asymptomatic aneurysms) groups and randomly divided into training (833 patients with 991 aneurysms) and internal validation (208 patients with 236 aneurysms) sets. One hundred and ninety-seven patients with 229 aneurysms from another hospital were included in the external validation set. Six models based on a convolutional neural network (CNN) or logistic regression were constructed on the basis of clinical, morphological and deep learning (DL) features. The area under the curve (AUC), accuracy, sensitivity and specificity were calculated to evaluate the discriminating ability of the models.</p><p><strong>Results: </strong>The AUCs of Models A (clinical), B (morphological) and C (DL features from the CTA image) in the external validation set were 0.5706, 0.9665 and 0.8453, respectively. The AUCs of Model D (clinical and DL features), Model E (clinical and morphological features) and Model F (clinical, morphological and DL features) in the external validation set were 0.8395, 0.9597 and 0.9696, respectively.</p><p><strong>Conclusions: </strong>The CNN-based DLM, which integrates clinical, morphological and DL features, outperforms other models in predicting IA stability. The DLM has the potential to assess IA stability and support clinical decision-making.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography.\",\"authors\":\"Lu Zeng, Li Wen, Yang Jing, Jing-Xu Xu, Chen-Cui Huang, Dong Zhang, Guang-Xian Wang\",\"doi\":\"10.1007/s11547-024-01939-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Assessment of the stability of intracranial aneurysms is important in the clinic but remains challenging. The aim of this study was to construct a deep learning model (DLM) to identify unstable aneurysms on computed tomography angiography (CTA) images.</p><p><strong>Methods: </strong>The clinical data of 1041 patients with 1227 aneurysms were retrospectively analyzed from August 2011 to May 2021. Patients with aneurysms were divided into unstable (ruptured, evolving and symptomatic aneurysms) and stable (fortuitous, nonevolving and asymptomatic aneurysms) groups and randomly divided into training (833 patients with 991 aneurysms) and internal validation (208 patients with 236 aneurysms) sets. One hundred and ninety-seven patients with 229 aneurysms from another hospital were included in the external validation set. Six models based on a convolutional neural network (CNN) or logistic regression were constructed on the basis of clinical, morphological and deep learning (DL) features. The area under the curve (AUC), accuracy, sensitivity and specificity were calculated to evaluate the discriminating ability of the models.</p><p><strong>Results: </strong>The AUCs of Models A (clinical), B (morphological) and C (DL features from the CTA image) in the external validation set were 0.5706, 0.9665 and 0.8453, respectively. The AUCs of Model D (clinical and DL features), Model E (clinical and morphological features) and Model F (clinical, morphological and DL features) in the external validation set were 0.8395, 0.9597 and 0.9696, respectively.</p><p><strong>Conclusions: </strong>The CNN-based DLM, which integrates clinical, morphological and DL features, outperforms other models in predicting IA stability. The DLM has the potential to assess IA stability and support clinical decision-making.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-024-01939-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-024-01939-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography.
Purpose: Assessment of the stability of intracranial aneurysms is important in the clinic but remains challenging. The aim of this study was to construct a deep learning model (DLM) to identify unstable aneurysms on computed tomography angiography (CTA) images.
Methods: The clinical data of 1041 patients with 1227 aneurysms were retrospectively analyzed from August 2011 to May 2021. Patients with aneurysms were divided into unstable (ruptured, evolving and symptomatic aneurysms) and stable (fortuitous, nonevolving and asymptomatic aneurysms) groups and randomly divided into training (833 patients with 991 aneurysms) and internal validation (208 patients with 236 aneurysms) sets. One hundred and ninety-seven patients with 229 aneurysms from another hospital were included in the external validation set. Six models based on a convolutional neural network (CNN) or logistic regression were constructed on the basis of clinical, morphological and deep learning (DL) features. The area under the curve (AUC), accuracy, sensitivity and specificity were calculated to evaluate the discriminating ability of the models.
Results: The AUCs of Models A (clinical), B (morphological) and C (DL features from the CTA image) in the external validation set were 0.5706, 0.9665 and 0.8453, respectively. The AUCs of Model D (clinical and DL features), Model E (clinical and morphological features) and Model F (clinical, morphological and DL features) in the external validation set were 0.8395, 0.9597 and 0.9696, respectively.
Conclusions: The CNN-based DLM, which integrates clinical, morphological and DL features, outperforms other models in predicting IA stability. The DLM has the potential to assess IA stability and support clinical decision-making.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.