基于基础模型的MRgRT实时目标定位,轮廓点跟踪和快速掩模细化。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-12-24 DOI:10.1088/1361-6560/ad9dad
Tom Blöcker, Elia Lombardo, Sebastian N Marschner, Claus Belka, Stefanie Corradini, Miguel A Palacios, Marco Riboldi, Christopher Kurz, Guillaume Landry
{"title":"基于基础模型的MRgRT实时目标定位,轮廓点跟踪和快速掩模细化。","authors":"Tom Blöcker, Elia Lombardo, Sebastian N Marschner, Claus Belka, Stefanie Corradini, Miguel A Palacios, Marco Riboldi, Christopher Kurz, Guillaume Landry","doi":"10.1088/1361-6560/ad9dad","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. This study aimed to evaluate two real-time target tracking approaches for magnetic resonance imaging (MRI) guided radiotherapy (MRgRT) based on foundation artificial intelligence models.<i>Approach</i>. The first approach used a point-tracking model that propagates points from a reference contour. The second approach used a video-object-segmentation model, based on segment anything model 2 (SAM2). Both approaches were evaluated and compared against each other, inter-observer variability, and a transformer-based image registration model, TransMorph, with and without patient-specific (PS) fine-tuning. The evaluation was carried out on 2D cine MRI datasets from two institutions, containing scans from 33 patients with 8060 labeled frames, with annotations from 2 to 5 observers per frame, totaling 29179 ground truth segmentations. The segmentations produced were assessed using the Dice similarity coefficient (DSC), 50% and 95% Hausdorff distances (HD50 / HD95), and the Euclidean center distance (ECD).<i>Main results</i>. The results showed that the contour tracking (median DSC0.92±0.04and ECD1.9±1.0 mm) and SAM2-based (median DSC0.93±0.03and ECD1.6±1.1 mm) approaches produced target segmentations comparable or superior to TransMorph w/o PS fine-tuning (median DSC0.91±0.07and ECD2.6±1.4 mm) and slightly inferior to TransMorph w/ PS fine-tuning (median DSC0.94±0.03and ECD1.4±0.8 mm). Between the two novel approaches, the one based on SAM2 performed marginally better at a higher computational cost (inference times 92 ms for contour tracking and 109 ms for SAM2). Both approaches and TransMorph w/ PS fine-tuning exceeded inter-observer variability (median DSC0.90±0.06and ECD1.7±0.7 mm).<i>Significance</i>. This study demonstrates the potential of foundation models to achieve high-quality real-time target tracking in MRgRT, offering performance that matches state-of-the-art methods without requiring PS fine-tuning.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRgRT real-time target localization using foundation models for contour point tracking and promptable mask refinement.\",\"authors\":\"Tom Blöcker, Elia Lombardo, Sebastian N Marschner, Claus Belka, Stefanie Corradini, Miguel A Palacios, Marco Riboldi, Christopher Kurz, Guillaume Landry\",\"doi\":\"10.1088/1361-6560/ad9dad\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. This study aimed to evaluate two real-time target tracking approaches for magnetic resonance imaging (MRI) guided radiotherapy (MRgRT) based on foundation artificial intelligence models.<i>Approach</i>. The first approach used a point-tracking model that propagates points from a reference contour. The second approach used a video-object-segmentation model, based on segment anything model 2 (SAM2). Both approaches were evaluated and compared against each other, inter-observer variability, and a transformer-based image registration model, TransMorph, with and without patient-specific (PS) fine-tuning. The evaluation was carried out on 2D cine MRI datasets from two institutions, containing scans from 33 patients with 8060 labeled frames, with annotations from 2 to 5 observers per frame, totaling 29179 ground truth segmentations. The segmentations produced were assessed using the Dice similarity coefficient (DSC), 50% and 95% Hausdorff distances (HD50 / HD95), and the Euclidean center distance (ECD).<i>Main results</i>. The results showed that the contour tracking (median DSC0.92±0.04and ECD1.9±1.0 mm) and SAM2-based (median DSC0.93±0.03and ECD1.6±1.1 mm) approaches produced target segmentations comparable or superior to TransMorph w/o PS fine-tuning (median DSC0.91±0.07and ECD2.6±1.4 mm) and slightly inferior to TransMorph w/ PS fine-tuning (median DSC0.94±0.03and ECD1.4±0.8 mm). Between the two novel approaches, the one based on SAM2 performed marginally better at a higher computational cost (inference times 92 ms for contour tracking and 109 ms for SAM2). Both approaches and TransMorph w/ PS fine-tuning exceeded inter-observer variability (median DSC0.90±0.06and ECD1.7±0.7 mm).<i>Significance</i>. This study demonstrates the potential of foundation models to achieve high-quality real-time target tracking in MRgRT, offering performance that matches state-of-the-art methods without requiring PS fine-tuning.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad9dad\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9dad","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在评估两种基于基础人工智能(AI)模型的磁共振成像(MRI)引导放疗(MRgRT)实时目标跟踪方法。方法:第一种方法使用从参考轮廓传播点的点跟踪模型。第二种方法使用基于分段任意模型2 (SAM2)的视频对象分割模型。对这两种方法进行了评估和比较,并对观察者之间的可变性和基于变压器的图像配准模型TransMorph进行了评估和比较,并进行了患者特异性(PS)微调。对来自两家机构的2D电影MRI数据集进行评估,包含来自33名患者的扫描,有8060个标记帧,每帧有2到5个观察者的注释,总计29179个地面真值分割。使用Dice相似系数(DSC), 50%和95% Hausdorff距离(HD50 / HD95)以及欧几里得中心距离(ECD)对所产生的分割进行评估。结果表明,轮廓跟踪(DSC中位数为0.92±0.04,ECD为1.9±1.0 mm)和基于sam2的方法(DSC中位数为0.93±0.03,ECD为1.6±1.1 mm)的目标分割效果与未进行PS微调的TransMorph方法(DSC中位数为0.91±0.07,ECD为2.6±1.4 mm)相当或优于无PS微调的TransMorph方法(DSC中位数为0.94±0.03,ECD为1.4±0.8 mm),略低于有PS微调的TransMorph方法(DSC中位数为0.94±0.03,ECD为1.4±0.8 mm)。在这两种新方法之间,基于SAM2的方法表现略好,但计算成本更高(轮廓跟踪推理时间为92 ms, SAM2推理时间为109 ms)。两种方法和带有PS微调的TransMorph都超过了观察者间的可变性(DSC中值0.90±0.06和ECD中值1.7±0.7 mm)。意义:本研究证明了基础模型在MRgRT中实现高质量实时目标跟踪的潜力,在不需要PS微调的情况下提供与最先进方法相匹配的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRgRT real-time target localization using foundation models for contour point tracking and promptable mask refinement.

Objective. This study aimed to evaluate two real-time target tracking approaches for magnetic resonance imaging (MRI) guided radiotherapy (MRgRT) based on foundation artificial intelligence models.Approach. The first approach used a point-tracking model that propagates points from a reference contour. The second approach used a video-object-segmentation model, based on segment anything model 2 (SAM2). Both approaches were evaluated and compared against each other, inter-observer variability, and a transformer-based image registration model, TransMorph, with and without patient-specific (PS) fine-tuning. The evaluation was carried out on 2D cine MRI datasets from two institutions, containing scans from 33 patients with 8060 labeled frames, with annotations from 2 to 5 observers per frame, totaling 29179 ground truth segmentations. The segmentations produced were assessed using the Dice similarity coefficient (DSC), 50% and 95% Hausdorff distances (HD50 / HD95), and the Euclidean center distance (ECD).Main results. The results showed that the contour tracking (median DSC0.92±0.04and ECD1.9±1.0 mm) and SAM2-based (median DSC0.93±0.03and ECD1.6±1.1 mm) approaches produced target segmentations comparable or superior to TransMorph w/o PS fine-tuning (median DSC0.91±0.07and ECD2.6±1.4 mm) and slightly inferior to TransMorph w/ PS fine-tuning (median DSC0.94±0.03and ECD1.4±0.8 mm). Between the two novel approaches, the one based on SAM2 performed marginally better at a higher computational cost (inference times 92 ms for contour tracking and 109 ms for SAM2). Both approaches and TransMorph w/ PS fine-tuning exceeded inter-observer variability (median DSC0.90±0.06and ECD1.7±0.7 mm).Significance. This study demonstrates the potential of foundation models to achieve high-quality real-time target tracking in MRgRT, offering performance that matches state-of-the-art methods without requiring PS fine-tuning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1