低温条件下保存造血干细胞和祖细胞的注射溶液。

IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Stem Cell Reviews and Reports Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI:10.1007/s12015-024-10829-w
Jean Chevaleyre, Laura Rodriguez, Esther Attebi, Pascale Duchez, Zoran Ivanovic
{"title":"低温条件下保存造血干细胞和祖细胞的注射溶液。","authors":"Jean Chevaleyre, Laura Rodriguez, Esther Attebi, Pascale Duchez, Zoran Ivanovic","doi":"10.1007/s12015-024-10829-w","DOIUrl":null,"url":null,"abstract":"<p><p>To ensure the preservation of functional hematopoietic stem cells (HSC) and committed progenitor cells (HPC) at + 4 °C in ex vivo expanded cord blood cell products during worldwide transportation and subsequent infusion-without the need for washing and cell concentration-we developed a conservation medium called Stabilizer of Expanded Cells (SEC), composed exclusively of injectable pharmacological products. The in vivo engraftment assay in immunodeficient mice was used to detect primitive HSCs before and after preservation at + 4 °C. In some experiments, a complex phenotype based on CD34, CD38, and CD133 expression was utilized for this purpose. Committed progenitors (CFU-GM, BFU-E, and CFU-Mix) were detected using methylcellulose culture colony-forming assays. Additionally, in some cases, the energetic metabolism (mitochondrial respiration) was evaluated using Seahorse technology. SEC was able to preserve the functionality of HSCs and HPCs in ex vivo expanded cell populations at + 4 °C for at least 48 h. Furthermore, SEC is also effective in fully preserving HSCs and HPCs in cytapheresis products for at least 72 h. Additionally, SEC enabled the full preservation of HSCs and HPCs for 72 h in freshly collected cord blood, maintaining a normal metabolic profile of CD34<sup>+</sup> cells. The SEC medium exhibits a positive effect on the maintenance of both HSCs and HPCs at + 4 °C, regardless of their source. Therefore, SEC can be applied in cell therapy protocols based on HSCs and HPCs with a significant advantage: the product does not need to be washed and concentrated before injection into the patient.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"96-106"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Injectable Solution for Preservation of Hematopoietic Stem and Progenitors Cells in Hypothermic Condition.\",\"authors\":\"Jean Chevaleyre, Laura Rodriguez, Esther Attebi, Pascale Duchez, Zoran Ivanovic\",\"doi\":\"10.1007/s12015-024-10829-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To ensure the preservation of functional hematopoietic stem cells (HSC) and committed progenitor cells (HPC) at + 4 °C in ex vivo expanded cord blood cell products during worldwide transportation and subsequent infusion-without the need for washing and cell concentration-we developed a conservation medium called Stabilizer of Expanded Cells (SEC), composed exclusively of injectable pharmacological products. The in vivo engraftment assay in immunodeficient mice was used to detect primitive HSCs before and after preservation at + 4 °C. In some experiments, a complex phenotype based on CD34, CD38, and CD133 expression was utilized for this purpose. Committed progenitors (CFU-GM, BFU-E, and CFU-Mix) were detected using methylcellulose culture colony-forming assays. Additionally, in some cases, the energetic metabolism (mitochondrial respiration) was evaluated using Seahorse technology. SEC was able to preserve the functionality of HSCs and HPCs in ex vivo expanded cell populations at + 4 °C for at least 48 h. Furthermore, SEC is also effective in fully preserving HSCs and HPCs in cytapheresis products for at least 72 h. Additionally, SEC enabled the full preservation of HSCs and HPCs for 72 h in freshly collected cord blood, maintaining a normal metabolic profile of CD34<sup>+</sup> cells. The SEC medium exhibits a positive effect on the maintenance of both HSCs and HPCs at + 4 °C, regardless of their source. Therefore, SEC can be applied in cell therapy protocols based on HSCs and HPCs with a significant advantage: the product does not need to be washed and concentrated before injection into the patient.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"96-106\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10829-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10829-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了确保功能性造血干细胞(HSC)和固定祖细胞(HPC)在+ 4°C的体外扩增脐带血产品中在全球运输和随后的输注中保存-无需洗涤和细胞浓缩-我们开发了一种称为扩增细胞稳定器(SEC)的保存介质,该介质完全由可注射的药理学产品组成。采用免疫缺陷小鼠体内植入法检测+ 4℃保存前后的原始造血干细胞。在一些实验中,基于CD34、CD38和CD133表达的复杂表型被用于此目的。采用甲基纤维素培养菌落形成试验检测固定祖细胞(CFU-GM、BFU-E和CFU-Mix)。此外,在某些情况下,使用海马技术评估了能量代谢(线粒体呼吸)。SEC能够在+ 4°C的体外扩增细胞群中保存hsc和HPCs的功能至少48小时。此外,SEC还能有效地将造血干细胞和HPCs完全保存在造血分离产品中至少72小时。此外,SEC能够在新鲜采集的脐带血中完全保存hsc和HPCs 72小时,保持CD34+细胞的正常代谢谱。无论来源如何,SEC培养基对+ 4℃时造血干细胞和造血干细胞的维持均有积极作用。因此,SEC可以应用于基于造血干细胞和造血干细胞的细胞治疗方案,其显著优势是:产品在注射到患者体内之前不需要清洗和浓缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Injectable Solution for Preservation of Hematopoietic Stem and Progenitors Cells in Hypothermic Condition.

To ensure the preservation of functional hematopoietic stem cells (HSC) and committed progenitor cells (HPC) at + 4 °C in ex vivo expanded cord blood cell products during worldwide transportation and subsequent infusion-without the need for washing and cell concentration-we developed a conservation medium called Stabilizer of Expanded Cells (SEC), composed exclusively of injectable pharmacological products. The in vivo engraftment assay in immunodeficient mice was used to detect primitive HSCs before and after preservation at + 4 °C. In some experiments, a complex phenotype based on CD34, CD38, and CD133 expression was utilized for this purpose. Committed progenitors (CFU-GM, BFU-E, and CFU-Mix) were detected using methylcellulose culture colony-forming assays. Additionally, in some cases, the energetic metabolism (mitochondrial respiration) was evaluated using Seahorse technology. SEC was able to preserve the functionality of HSCs and HPCs in ex vivo expanded cell populations at + 4 °C for at least 48 h. Furthermore, SEC is also effective in fully preserving HSCs and HPCs in cytapheresis products for at least 72 h. Additionally, SEC enabled the full preservation of HSCs and HPCs for 72 h in freshly collected cord blood, maintaining a normal metabolic profile of CD34+ cells. The SEC medium exhibits a positive effect on the maintenance of both HSCs and HPCs at + 4 °C, regardless of their source. Therefore, SEC can be applied in cell therapy protocols based on HSCs and HPCs with a significant advantage: the product does not need to be washed and concentrated before injection into the patient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
期刊最新文献
hUC-MSCs Prevent Acute High-Altitude Injury through Apoe/Pdgf-b/p-Erk1/2 Axis in Mice. Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells. Empagliflozin Reduces High Glucose-Induced Cardiomyopathy in hiPSC-Derived Cardiomyocytes : Glucose-induced Lipotoxicity in hiPSC-Derived Cardiomyocytes. Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead. Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1