{"title":"淹没植被冠层中的湍流和层质输运","authors":"Tian Zhao, Heidi Nepf","doi":"10.1029/2024wr037694","DOIUrl":null,"url":null,"abstract":"Using a constant channel velocity, <span data-altimg=\"/cms/asset/70a4c7db-bd6a-48ef-a7e9-acfa323f7367/wrcr27612-math-0001.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0001\" display=\"inline\" location=\"graphic/wrcr27612-math-0001.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math>, flume experiments investigated how canopy density (<span data-altimg=\"/cms/asset/f3ebe3ea-8869-45b7-9efd-f8a159023edf/wrcr27612-math-0002.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0002\" display=\"inline\" location=\"graphic/wrcr27612-math-0002.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math>, with canopy frontal area per unit volume <span data-altimg=\"/cms/asset/669ce969-2e78-4ff1-b9be-868a9bbad7d5/wrcr27612-math-0003.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0003\" display=\"inline\" location=\"graphic/wrcr27612-math-0003.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n</mrow>\n$a$</annotation>\n</semantics></math>, and canopy height <span data-altimg=\"/cms/asset/f6b29139-6691-42eb-9207-55147e0e82f8/wrcr27612-math-0004.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0004\" display=\"inline\" location=\"graphic/wrcr27612-math-0004.png\">\n<semantics>\n<mrow>\n<mi>h</mi>\n</mrow>\n$h$</annotation>\n</semantics></math>) and submergence ratio (<span data-altimg=\"/cms/asset/546d9e68-c1c3-4878-b498-253ec4794c8a/wrcr27612-math-0005.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0005\" display=\"inline\" location=\"graphic/wrcr27612-math-0005.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math>, with <span data-altimg=\"/cms/asset/7ea0294b-799d-4e6d-82dc-bc8ff2b29a1b/wrcr27612-math-0006.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0006\" display=\"inline\" location=\"graphic/wrcr27612-math-0006.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n</mrow>\n$H$</annotation>\n</semantics></math> the flow depth) impacted near-bed velocity, turbulence, and bedload transport within a submerged canopy of rigid model vegetation. For <span data-altimg=\"/cms/asset/86607138-c301-4010-8ee7-235843782c82/wrcr27612-math-0007.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0007\" display=\"inline\" location=\"graphic/wrcr27612-math-0007.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> < 2, the near-bed turbulent kinetic energy (TKE) was predominantly stem-generated. As <span data-altimg=\"/cms/asset/629b357b-de3e-4942-a3a4-66ffc8f08c5d/wrcr27612-math-0008.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0008\" display=\"inline\" location=\"graphic/wrcr27612-math-0008.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> increased, both the near-bed TKE and bedload transport rate (<span data-altimg=\"/cms/asset/4992e2cb-1917-4508-b524-aa7b58265106/wrcr27612-math-0009.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0009\" display=\"inline\" location=\"graphic/wrcr27612-math-0009.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math>) increased. For <span data-altimg=\"/cms/asset/fafb9c2a-fbfb-4165-970a-e0baaab33065/wrcr27612-math-0010.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0010\" display=\"inline\" location=\"graphic/wrcr27612-math-0010.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> > 2, the near-bed TKE was insensitive to <span data-altimg=\"/cms/asset/c353fa1b-f61d-4484-bc85-555884847b68/wrcr27612-math-0011.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0011\" display=\"inline\" location=\"graphic/wrcr27612-math-0011.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> and <span data-altimg=\"/cms/asset/e14a0a83-e26b-46d2-8e7d-fbae5daeb7fb/wrcr27612-math-0012.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0012\" display=\"inline\" location=\"graphic/wrcr27612-math-0012.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math>, because of a trade-off between decreasing stem-generated turbulence and increasing canopy-shear-generated turbulence, as <span data-altimg=\"/cms/asset/b42ab687-ed16-4d33-85da-0f26bc1894f2/wrcr27612-math-0013.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0013\" display=\"inline\" location=\"graphic/wrcr27612-math-0013.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> and <span data-altimg=\"/cms/asset/88da6652-08a9-451b-b6e0-8c231c936a4a/wrcr27612-math-0014.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0014\" display=\"inline\" location=\"graphic/wrcr27612-math-0014.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> increased. However, the near-bed velocity declined with increasing <span data-altimg=\"/cms/asset/df68d005-699a-4318-85a3-50adeb9ccd58/wrcr27612-math-0015.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0015\" display=\"inline\" location=\"graphic/wrcr27612-math-0015.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> and <span data-altimg=\"/cms/asset/5866bfb5-e105-465e-9eb9-22117e09c971/wrcr27612-math-0016.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0016\" display=\"inline\" location=\"graphic/wrcr27612-math-0016.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math>, such that, even with a constant TKE, <span data-altimg=\"/cms/asset/5324c149-b58f-4c1b-8a71-2be7db410e1a/wrcr27612-math-0017.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0017\" display=\"inline\" location=\"graphic/wrcr27612-math-0017.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math> also declined. These trends highlight that both TKE and velocity were important in controlling bedload transport. Models to predict velocity, TKE, and bedload transport were developed and validated with measurements. The models were then used to explore conditions more relevant to the field, specifically with constant energy slope (<span data-altimg=\"/cms/asset/fac0a007-921c-4cf9-a5be-d73ee1faa5ac/wrcr27612-math-0018.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0018\" display=\"inline\" location=\"graphic/wrcr27612-math-0018.png\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$S$</annotation>\n</semantics></math>) and flexible vegetation. For a constant energy slope, <span data-altimg=\"/cms/asset/48836d82-9985-4eef-b5de-79f55e984de7/wrcr27612-math-0019.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0019\" display=\"inline\" location=\"graphic/wrcr27612-math-0019.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math> increased as <span data-altimg=\"/cms/asset/56784217-9b6e-46db-b81b-37f71c8d2d17/wrcr27612-math-0020.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0020\" display=\"inline\" location=\"graphic/wrcr27612-math-0020.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> decreased and as <span data-altimg=\"/cms/asset/84648712-ec4d-4bff-85d1-eeb978b6f41c/wrcr27612-math-0021.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0021\" display=\"inline\" location=\"graphic/wrcr27612-math-0021.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> increased, which in turn influenced the in-canopy velocity and TKE. The highest <span data-altimg=\"/cms/asset/f23c96d9-6145-412a-ac47-73056d3e2c03/wrcr27612-math-0022.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0022\" display=\"inline\" location=\"graphic/wrcr27612-math-0022.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math> occurred with the greatest <span data-altimg=\"/cms/asset/736801f5-8f7c-4f55-8113-841a5fa3b483/wrcr27612-math-0023.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0023\" display=\"inline\" location=\"graphic/wrcr27612-math-0023.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> and smallest <span data-altimg=\"/cms/asset/bfc2309e-5666-47af-b291-7dd90e98d7b0/wrcr27612-math-0024.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0024\" display=\"inline\" location=\"graphic/wrcr27612-math-0024.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math>, corresponding to the highest <span data-altimg=\"/cms/asset/1f848b97-356d-4384-ba88-d8e7b2e64424/wrcr27612-math-0025.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0025\" display=\"inline\" location=\"graphic/wrcr27612-math-0025.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math> and greatest contribution of canopy-shear-generated turbulence, reflecting the importance of canopy-shear-generated turbulence in submerged canopies. The lowest <span data-altimg=\"/cms/asset/36d3b875-f4a2-430b-b589-f13bcf134ccf/wrcr27612-math-0026.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0026\" display=\"inline\" location=\"graphic/wrcr27612-math-0026.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math> occurred with smallest <span data-altimg=\"/cms/asset/3d78ef91-586d-463a-8621-e8b29e1adeca/wrcr27612-math-0027.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0027\" display=\"inline\" location=\"graphic/wrcr27612-math-0027.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> and highest <span data-altimg=\"/cms/asset/27df9988-78db-43a3-9368-ac98ee270649/wrcr27612-math-0028.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0028\" display=\"inline\" location=\"graphic/wrcr27612-math-0028.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math>, corresponding to the smallest <span data-altimg=\"/cms/asset/b7afcb4b-0df2-460f-bc47-b8082f31e4f2/wrcr27612-math-0029.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0029\" display=\"inline\" location=\"graphic/wrcr27612-math-0029.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math> and least contribution of canopy-shear-generated turbulence.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"22 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence and Bedload Transport in Submerged Vegetation Canopies\",\"authors\":\"Tian Zhao, Heidi Nepf\",\"doi\":\"10.1029/2024wr037694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a constant channel velocity, <span data-altimg=\\\"/cms/asset/70a4c7db-bd6a-48ef-a7e9-acfa323f7367/wrcr27612-math-0001.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0001.png\\\">\\n<semantics>\\n<mrow>\\n<mi>U</mi>\\n</mrow>\\n$U$</annotation>\\n</semantics></math>, flume experiments investigated how canopy density (<span data-altimg=\\\"/cms/asset/f3ebe3ea-8869-45b7-9efd-f8a159023edf/wrcr27612-math-0002.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0002.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math>, with canopy frontal area per unit volume <span data-altimg=\\\"/cms/asset/669ce969-2e78-4ff1-b9be-868a9bbad7d5/wrcr27612-math-0003.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0003.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n</mrow>\\n$a$</annotation>\\n</semantics></math>, and canopy height <span data-altimg=\\\"/cms/asset/f6b29139-6691-42eb-9207-55147e0e82f8/wrcr27612-math-0004.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0004.png\\\">\\n<semantics>\\n<mrow>\\n<mi>h</mi>\\n</mrow>\\n$h$</annotation>\\n</semantics></math>) and submergence ratio (<span data-altimg=\\\"/cms/asset/546d9e68-c1c3-4878-b498-253ec4794c8a/wrcr27612-math-0005.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0005.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math>, with <span data-altimg=\\\"/cms/asset/7ea0294b-799d-4e6d-82dc-bc8ff2b29a1b/wrcr27612-math-0006.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0006.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n</mrow>\\n$H$</annotation>\\n</semantics></math> the flow depth) impacted near-bed velocity, turbulence, and bedload transport within a submerged canopy of rigid model vegetation. For <span data-altimg=\\\"/cms/asset/86607138-c301-4010-8ee7-235843782c82/wrcr27612-math-0007.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0007.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math> < 2, the near-bed turbulent kinetic energy (TKE) was predominantly stem-generated. As <span data-altimg=\\\"/cms/asset/629b357b-de3e-4942-a3a4-66ffc8f08c5d/wrcr27612-math-0008.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0008.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math> increased, both the near-bed TKE and bedload transport rate (<span data-altimg=\\\"/cms/asset/4992e2cb-1917-4508-b524-aa7b58265106/wrcr27612-math-0009.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0009\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0009.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mi>q</mi>\\n<mi mathvariant=\\\"normal\\\">s</mi>\\n</msub>\\n</mrow>\\n${q}_{\\\\mathrm{s}}$</annotation>\\n</semantics></math>) increased. For <span data-altimg=\\\"/cms/asset/fafb9c2a-fbfb-4165-970a-e0baaab33065/wrcr27612-math-0010.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0010\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0010.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math> > 2, the near-bed TKE was insensitive to <span data-altimg=\\\"/cms/asset/c353fa1b-f61d-4484-bc85-555884847b68/wrcr27612-math-0011.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0011\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0011.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math> and <span data-altimg=\\\"/cms/asset/e14a0a83-e26b-46d2-8e7d-fbae5daeb7fb/wrcr27612-math-0012.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0012\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0012.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math>, because of a trade-off between decreasing stem-generated turbulence and increasing canopy-shear-generated turbulence, as <span data-altimg=\\\"/cms/asset/b42ab687-ed16-4d33-85da-0f26bc1894f2/wrcr27612-math-0013.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0013\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0013.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math> and <span data-altimg=\\\"/cms/asset/88da6652-08a9-451b-b6e0-8c231c936a4a/wrcr27612-math-0014.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0014\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0014.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math> increased. However, the near-bed velocity declined with increasing <span data-altimg=\\\"/cms/asset/df68d005-699a-4318-85a3-50adeb9ccd58/wrcr27612-math-0015.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0015\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0015.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math> and <span data-altimg=\\\"/cms/asset/5866bfb5-e105-465e-9eb9-22117e09c971/wrcr27612-math-0016.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0016\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0016.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math>, such that, even with a constant TKE, <span data-altimg=\\\"/cms/asset/5324c149-b58f-4c1b-8a71-2be7db410e1a/wrcr27612-math-0017.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0017\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0017.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mi>q</mi>\\n<mi mathvariant=\\\"normal\\\">s</mi>\\n</msub>\\n</mrow>\\n${q}_{\\\\mathrm{s}}$</annotation>\\n</semantics></math> also declined. These trends highlight that both TKE and velocity were important in controlling bedload transport. Models to predict velocity, TKE, and bedload transport were developed and validated with measurements. The models were then used to explore conditions more relevant to the field, specifically with constant energy slope (<span data-altimg=\\\"/cms/asset/fac0a007-921c-4cf9-a5be-d73ee1faa5ac/wrcr27612-math-0018.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0018\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0018.png\\\">\\n<semantics>\\n<mrow>\\n<mi>S</mi>\\n</mrow>\\n$S$</annotation>\\n</semantics></math>) and flexible vegetation. For a constant energy slope, <span data-altimg=\\\"/cms/asset/48836d82-9985-4eef-b5de-79f55e984de7/wrcr27612-math-0019.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0019\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0019.png\\\">\\n<semantics>\\n<mrow>\\n<mi>U</mi>\\n</mrow>\\n$U$</annotation>\\n</semantics></math> increased as <span data-altimg=\\\"/cms/asset/56784217-9b6e-46db-b81b-37f71c8d2d17/wrcr27612-math-0020.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0020\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0020.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math> decreased and as <span data-altimg=\\\"/cms/asset/84648712-ec4d-4bff-85d1-eeb978b6f41c/wrcr27612-math-0021.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0021\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0021.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math> increased, which in turn influenced the in-canopy velocity and TKE. The highest <span data-altimg=\\\"/cms/asset/f23c96d9-6145-412a-ac47-73056d3e2c03/wrcr27612-math-0022.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0022\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0022.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mi>q</mi>\\n<mi mathvariant=\\\"normal\\\">s</mi>\\n</msub>\\n</mrow>\\n${q}_{\\\\mathrm{s}}$</annotation>\\n</semantics></math> occurred with the greatest <span data-altimg=\\\"/cms/asset/736801f5-8f7c-4f55-8113-841a5fa3b483/wrcr27612-math-0023.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0023\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0023.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math> and smallest <span data-altimg=\\\"/cms/asset/bfc2309e-5666-47af-b291-7dd90e98d7b0/wrcr27612-math-0024.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0024\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0024.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math>, corresponding to the highest <span data-altimg=\\\"/cms/asset/1f848b97-356d-4384-ba88-d8e7b2e64424/wrcr27612-math-0025.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0025\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0025.png\\\">\\n<semantics>\\n<mrow>\\n<mi>U</mi>\\n</mrow>\\n$U$</annotation>\\n</semantics></math> and greatest contribution of canopy-shear-generated turbulence, reflecting the importance of canopy-shear-generated turbulence in submerged canopies. The lowest <span data-altimg=\\\"/cms/asset/36d3b875-f4a2-430b-b589-f13bcf134ccf/wrcr27612-math-0026.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0026\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0026.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mi>q</mi>\\n<mi mathvariant=\\\"normal\\\">s</mi>\\n</msub>\\n</mrow>\\n${q}_{\\\\mathrm{s}}$</annotation>\\n</semantics></math> occurred with smallest <span data-altimg=\\\"/cms/asset/3d78ef91-586d-463a-8621-e8b29e1adeca/wrcr27612-math-0027.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0027\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0027.png\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>/</mo>\\n<mi>h</mi>\\n</mrow>\\n$H/h$</annotation>\\n</semantics></math> and highest <span data-altimg=\\\"/cms/asset/27df9988-78db-43a3-9368-ac98ee270649/wrcr27612-math-0028.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0028\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0028.png\\\">\\n<semantics>\\n<mrow>\\n<mi>a</mi>\\n<mi>h</mi>\\n</mrow>\\n$ah$</annotation>\\n</semantics></math>, corresponding to the smallest <span data-altimg=\\\"/cms/asset/b7afcb4b-0df2-460f-bc47-b8082f31e4f2/wrcr27612-math-0029.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0029\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27612-math-0029.png\\\">\\n<semantics>\\n<mrow>\\n<mi>U</mi>\\n</mrow>\\n$U$</annotation>\\n</semantics></math> and least contribution of canopy-shear-generated turbulence.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr037694\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037694","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Turbulence and Bedload Transport in Submerged Vegetation Canopies
Using a constant channel velocity, , flume experiments investigated how canopy density (, with canopy frontal area per unit volume , and canopy height ) and submergence ratio (, with the flow depth) impacted near-bed velocity, turbulence, and bedload transport within a submerged canopy of rigid model vegetation. For < 2, the near-bed turbulent kinetic energy (TKE) was predominantly stem-generated. As increased, both the near-bed TKE and bedload transport rate () increased. For > 2, the near-bed TKE was insensitive to and , because of a trade-off between decreasing stem-generated turbulence and increasing canopy-shear-generated turbulence, as and increased. However, the near-bed velocity declined with increasing and , such that, even with a constant TKE, also declined. These trends highlight that both TKE and velocity were important in controlling bedload transport. Models to predict velocity, TKE, and bedload transport were developed and validated with measurements. The models were then used to explore conditions more relevant to the field, specifically with constant energy slope () and flexible vegetation. For a constant energy slope, increased as decreased and as increased, which in turn influenced the in-canopy velocity and TKE. The highest occurred with the greatest and smallest , corresponding to the highest and greatest contribution of canopy-shear-generated turbulence, reflecting the importance of canopy-shear-generated turbulence in submerged canopies. The lowest occurred with smallest and highest , corresponding to the smallest and least contribution of canopy-shear-generated turbulence.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.