温暖的温度与体重减少和多样化率有关,同时增加了适应寒冷的海鸟的灭绝风险

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2024-12-13 DOI:10.1111/gcb.70000
Ying Xiong, Liqing Fan, Yongbin Chang, Hongtao Xiao, Fumin Lei
{"title":"温暖的温度与体重减少和多样化率有关,同时增加了适应寒冷的海鸟的灭绝风险","authors":"Ying Xiong,&nbsp;Liqing Fan,&nbsp;Yongbin Chang,&nbsp;Hongtao Xiao,&nbsp;Fumin Lei","doi":"10.1111/gcb.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Anthropogenic rapid warming has caused decreases in richness and body mass of birds following the metabolic theory of ecology; yet, the pervasiveness of these shifts remains controversial among different taxa. Here, by combining phylogenetic methods and fossil data, we synthesized spatial patterns of richness and body mass for 328 seabird species belonging to two groups: Procellariimorphae (PM) and non-Procellariimorphae (NPM). We found that the relationship between body mass and richness, as well as diversification rate, exhibits distinct patterns in these two groups. Ancestral state reconstruction analyses indicate that smaller PM, as opposed to NPM seabirds, evolved in warmer waters from larger ancestors and exhibited a slower diversification rate. Different ancestral climatic origins explain the reduced influence of environmental factors on richness patterns among PM compared to NPM seabirds. Furthermore, whereas NPM seabirds in high latitudes face a high extinction risk, warmer sea temperatures positively correlate with a high extinction risk among PM seabirds. Our results indicate that PM seabirds, evolving from cold waters, have reduced body mass and diversification rate, making them more vulnerable to warmer temperature.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 12","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Warm Temperature is Associated With Reduced Body Mass and Diversification Rates While Increasing Extinction Risks in Cold-Adapted Seabirds\",\"authors\":\"Ying Xiong,&nbsp;Liqing Fan,&nbsp;Yongbin Chang,&nbsp;Hongtao Xiao,&nbsp;Fumin Lei\",\"doi\":\"10.1111/gcb.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Anthropogenic rapid warming has caused decreases in richness and body mass of birds following the metabolic theory of ecology; yet, the pervasiveness of these shifts remains controversial among different taxa. Here, by combining phylogenetic methods and fossil data, we synthesized spatial patterns of richness and body mass for 328 seabird species belonging to two groups: Procellariimorphae (PM) and non-Procellariimorphae (NPM). We found that the relationship between body mass and richness, as well as diversification rate, exhibits distinct patterns in these two groups. Ancestral state reconstruction analyses indicate that smaller PM, as opposed to NPM seabirds, evolved in warmer waters from larger ancestors and exhibited a slower diversification rate. Different ancestral climatic origins explain the reduced influence of environmental factors on richness patterns among PM compared to NPM seabirds. Furthermore, whereas NPM seabirds in high latitudes face a high extinction risk, warmer sea temperatures positively correlate with a high extinction risk among PM seabirds. Our results indicate that PM seabirds, evolving from cold waters, have reduced body mass and diversification rate, making them more vulnerable to warmer temperature.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"30 12\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70000\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70000","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

根据生态学的新陈代谢理论,人为的快速变暖导致鸟类的丰富度和体重下降;然而,这些变化的普遍性在不同类群中仍存在争议。在此,我们结合系统发生学方法和化石数据,综合分析了属于两个类群的 328 种海鸟的丰富度和体重的空间模式:我们发现,体质量与物种丰富度之间的关系是由物种丰富度与体质量之间的关系决定的。我们发现,在这两个类群中,体质量与丰富度以及多样化率之间的关系呈现出不同的模式。祖先状态重建分析表明,相对于非红腹锦鸡科海鸟,体型较小的红腹锦鸡科海鸟是从体型较大的祖先进化到温暖水域的,其多样化速度较慢。不同的祖先气候起源解释了为什么环境因素对PM海鸟丰富度模式的影响小于NPM海鸟。此外,高纬度地区的北太平洋鸻海鸟面临着很高的灭绝风险,而较高的海温与南太平洋鸻海鸟的高灭绝风险呈正相关。我们的研究结果表明,PM海鸟是从寒冷水域进化而来的,它们的体质和分化率都较低,因此更容易受到温度升高的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Warm Temperature is Associated With Reduced Body Mass and Diversification Rates While Increasing Extinction Risks in Cold-Adapted Seabirds

Anthropogenic rapid warming has caused decreases in richness and body mass of birds following the metabolic theory of ecology; yet, the pervasiveness of these shifts remains controversial among different taxa. Here, by combining phylogenetic methods and fossil data, we synthesized spatial patterns of richness and body mass for 328 seabird species belonging to two groups: Procellariimorphae (PM) and non-Procellariimorphae (NPM). We found that the relationship between body mass and richness, as well as diversification rate, exhibits distinct patterns in these two groups. Ancestral state reconstruction analyses indicate that smaller PM, as opposed to NPM seabirds, evolved in warmer waters from larger ancestors and exhibited a slower diversification rate. Different ancestral climatic origins explain the reduced influence of environmental factors on richness patterns among PM compared to NPM seabirds. Furthermore, whereas NPM seabirds in high latitudes face a high extinction risk, warmer sea temperatures positively correlate with a high extinction risk among PM seabirds. Our results indicate that PM seabirds, evolving from cold waters, have reduced body mass and diversification rate, making them more vulnerable to warmer temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming Pressure on Global Forests: Implications of Rising Vegetable Oils Consumption Under the EAT-Lancet Diet Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N2O Emissions Potential Spatial Mismatches Between Marine Predators and Their Prey in the Southern Hemisphere in Response to Climate Change Continent-Wide Patterns of Climate and Mast Seeding Entrain Boreal Bird Irruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1