基于数字物理孪生和多参数识别的结构性能评价

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-12-12 DOI:10.1016/j.autcon.2024.105907
Yixuan Chen, Sicong Xie, Jian Zhang
{"title":"基于数字物理孪生和多参数识别的结构性能评价","authors":"Yixuan Chen, Sicong Xie, Jian Zhang","doi":"10.1016/j.autcon.2024.105907","DOIUrl":null,"url":null,"abstract":"The performance of existing structures is often compromised by damage and condition changes, challenging current evaluation methods in accurately assessing their service status. This paper introduces a structural performance evaluation method via digital-physical twin and multi-parameter identification. Key features include: (1) a digital twin framework that integrates non-contact sensing data with finite element models. (2) a technique for local stiffness reduction using intelligent crack inspection data, where deep learning extracts crack information and a mechanical model calculates stiffness reduction coefficients. (3) a multi-parameter identification approach combining non-contact monitoring data with twin substructure models, employing substructure interaction technology and an enhanced unscented Kalman filter algorithm to identify critical parameters like support stiffness. The method's feasibility is demonstrated through a case study involving a frame structure, offering a new paradigm for the safety assessment of existing structures.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"10 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural performance evaluation via digital-physical twin and multi-parameter identification\",\"authors\":\"Yixuan Chen, Sicong Xie, Jian Zhang\",\"doi\":\"10.1016/j.autcon.2024.105907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of existing structures is often compromised by damage and condition changes, challenging current evaluation methods in accurately assessing their service status. This paper introduces a structural performance evaluation method via digital-physical twin and multi-parameter identification. Key features include: (1) a digital twin framework that integrates non-contact sensing data with finite element models. (2) a technique for local stiffness reduction using intelligent crack inspection data, where deep learning extracts crack information and a mechanical model calculates stiffness reduction coefficients. (3) a multi-parameter identification approach combining non-contact monitoring data with twin substructure models, employing substructure interaction technology and an enhanced unscented Kalman filter algorithm to identify critical parameters like support stiffness. The method's feasibility is demonstrated through a case study involving a frame structure, offering a new paradigm for the safety assessment of existing structures.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105907\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105907","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

现有结构的性能经常受到损伤和状态变化的影响,这对现有的评估方法在准确评估其使用状态方面提出了挑战。介绍了一种基于数字物理孪生和多参数识别的结构性能评价方法。主要特征包括:(1)将非接触式传感数据与有限元模型集成在一起的数字孪生框架。(2)基于智能裂纹检测数据的局部刚度折减技术,其中深度学习提取裂纹信息,力学模型计算刚度折减系数。(3)将非接触监测数据与双子结构模型相结合,采用子结构相互作用技术和增强的无气味卡尔曼滤波算法识别支护刚度等关键参数的多参数识别方法。通过对某框架结构的实例分析,验证了该方法的可行性,为既有结构的安全评估提供了一种新的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural performance evaluation via digital-physical twin and multi-parameter identification
The performance of existing structures is often compromised by damage and condition changes, challenging current evaluation methods in accurately assessing their service status. This paper introduces a structural performance evaluation method via digital-physical twin and multi-parameter identification. Key features include: (1) a digital twin framework that integrates non-contact sensing data with finite element models. (2) a technique for local stiffness reduction using intelligent crack inspection data, where deep learning extracts crack information and a mechanical model calculates stiffness reduction coefficients. (3) a multi-parameter identification approach combining non-contact monitoring data with twin substructure models, employing substructure interaction technology and an enhanced unscented Kalman filter algorithm to identify critical parameters like support stiffness. The method's feasibility is demonstrated through a case study involving a frame structure, offering a new paradigm for the safety assessment of existing structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Tile detection using mask R-CNN in non-structural environment for robotic tiling Application of digitalization and computerization technology in road construction Active learning-driven semantic segmentation for railway point clouds with limited labels Bridge point cloud semantic segmentation based on view consensus and cross-view self-prompt fusion Image-based prediction for enclosure structure deformation in pipe-roof tunnel construction using a physical-guided and generative deep learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1