人类视觉聚类的点阵列。

IF 5.1 1区 心理学 Q1 PSYCHOLOGY Psychological review Pub Date : 2024-12-12 DOI:10.1037/rev0000525
Vijay Marupudi, Sashank Varma
{"title":"人类视觉聚类的点阵列。","authors":"Vijay Marupudi, Sashank Varma","doi":"10.1037/rev0000525","DOIUrl":null,"url":null,"abstract":"<p><p>Although the importance of unsupervised learning has been recognized since William James's \"blooming, buzzing confusion,\" it has received less attention in the literature than supervised learning. An important form of unsupervised learning is clustering, which involves determining the groups of distinct objects that belong together. Visual clustering is foundational for ensemble perception, numerosity judgments, spatial problem-solving, understanding information visualizations, and other forms of visual cognition, and yet surprisingly few researchers have directly investigated this human ability. In this study, participants freely clustered arrays that varied in the number of points (10-40) and cluster structure of the stimuli, which was defined based on the statistical distribution of points. We found that clustering is a reliable ability: Participants' clusterings of the same stimulus on two occasions were highly similar. With respect to the objective properties of the clusterings that people produce, points of individual clusters tend to follow a Gaussian distribution. With respect to processing, we identified five visual attributes that characterize the clusters that participants draw-cluster numerosity, area, density, and linearity and also percentage of points on the convex hull. We also discovered evidence for sequential strategies, with some attributes dominating when drawing the initial clusters of a stimulus and others guiding the final clusters. Collectively, these findings offer a comprehensive picture of human visual clustering and serve as a foundation for the development of new models of this important ability. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":21016,"journal":{"name":"Psychological review","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human visual clustering of point arrays.\",\"authors\":\"Vijay Marupudi, Sashank Varma\",\"doi\":\"10.1037/rev0000525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the importance of unsupervised learning has been recognized since William James's \\\"blooming, buzzing confusion,\\\" it has received less attention in the literature than supervised learning. An important form of unsupervised learning is clustering, which involves determining the groups of distinct objects that belong together. Visual clustering is foundational for ensemble perception, numerosity judgments, spatial problem-solving, understanding information visualizations, and other forms of visual cognition, and yet surprisingly few researchers have directly investigated this human ability. In this study, participants freely clustered arrays that varied in the number of points (10-40) and cluster structure of the stimuli, which was defined based on the statistical distribution of points. We found that clustering is a reliable ability: Participants' clusterings of the same stimulus on two occasions were highly similar. With respect to the objective properties of the clusterings that people produce, points of individual clusters tend to follow a Gaussian distribution. With respect to processing, we identified five visual attributes that characterize the clusters that participants draw-cluster numerosity, area, density, and linearity and also percentage of points on the convex hull. We also discovered evidence for sequential strategies, with some attributes dominating when drawing the initial clusters of a stimulus and others guiding the final clusters. Collectively, these findings offer a comprehensive picture of human visual clustering and serve as a foundation for the development of new models of this important ability. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":21016,\"journal\":{\"name\":\"Psychological review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/rev0000525\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/rev0000525","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管自威廉-詹姆斯提出 "绽放的、嗡嗡作响的混乱 "以来,人们就认识到了无监督学习的重要性,但与有监督学习相比,无监督学习在文献中受到的关注较少。聚类是无监督学习的一种重要形式,它涉及确定属于一起的不同物体组。视觉聚类对于集合感知、数字判断、空间问题解决、信息可视化理解以及其他形式的视觉认知都具有基础性作用,然而令人惊讶的是,很少有研究人员直接研究过人类的这种能力。在这项研究中,参与者自由地对点数(10-40 个)和刺激物聚类结构不同的阵列进行聚类,刺激物的聚类结构是根据点数的统计分布来定义的。我们发现,聚类是一种可靠的能力:参与者在两个场合对同一刺激物的聚类高度相似。就人们产生的聚类的客观属性而言,单个聚类的点往往遵循高斯分布。在处理过程中,我们发现了五种视觉属性,它们是参与者绘制的聚类的特征--聚类的数量、面积、密度、线性以及凸壳上点的百分比。我们还发现了顺序策略的证据,在绘制刺激物的初始聚类时,一些属性占主导地位,而另一些属性则指导最后的聚类。总之,这些发现提供了人类视觉聚类的全面图景,并为这一重要能力的新模型的开发奠定了基础。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human visual clustering of point arrays.

Although the importance of unsupervised learning has been recognized since William James's "blooming, buzzing confusion," it has received less attention in the literature than supervised learning. An important form of unsupervised learning is clustering, which involves determining the groups of distinct objects that belong together. Visual clustering is foundational for ensemble perception, numerosity judgments, spatial problem-solving, understanding information visualizations, and other forms of visual cognition, and yet surprisingly few researchers have directly investigated this human ability. In this study, participants freely clustered arrays that varied in the number of points (10-40) and cluster structure of the stimuli, which was defined based on the statistical distribution of points. We found that clustering is a reliable ability: Participants' clusterings of the same stimulus on two occasions were highly similar. With respect to the objective properties of the clusterings that people produce, points of individual clusters tend to follow a Gaussian distribution. With respect to processing, we identified five visual attributes that characterize the clusters that participants draw-cluster numerosity, area, density, and linearity and also percentage of points on the convex hull. We also discovered evidence for sequential strategies, with some attributes dominating when drawing the initial clusters of a stimulus and others guiding the final clusters. Collectively, these findings offer a comprehensive picture of human visual clustering and serve as a foundation for the development of new models of this important ability. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Psychological review
Psychological review 医学-心理学
CiteScore
9.70
自引率
5.60%
发文量
97
期刊介绍: Psychological Review publishes articles that make important theoretical contributions to any area of scientific psychology, including systematic evaluation of alternative theories.
期刊最新文献
Beliefs about perception shape perceptual inference: An ideal observer model of detection. Nurture and nonshared environment in cognitive development. Cognitive and neural mechanisms of linguistic influence on perception. Differences in learning across the lifespan emerge via resource-rational computations. True and false recognition in MINERVA2: Integrating fuzzy-trace theory and computational memory modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1