Kimberly A Barchard, James M Carroll, Shawn Reynolds, James A Russell
{"title":"测试两极性。","authors":"Kimberly A Barchard, James M Carroll, Shawn Reynolds, James A Russell","doi":"10.1037/met0000707","DOIUrl":null,"url":null,"abstract":"<p><p>Many psychological dimensions seem bipolar (e.g., happy-sad, optimism-pessimism, and introversion-extraversion). However, seeming opposites frequently do not act the way researchers predict real opposites would: having correlations near -1, loading on the same factor, and having relations with external variables that are equal in magnitude and opposite in sign. We argue these predictions are often incorrect because the bipolar model has been misspecified or specified too narrowly. We therefore explicitly define a general bipolar model for ideal error-free data and then extend this model to empirical data influenced by random and systematic measurement error. Our model shows the predictions above are correct only under restrictive circumstances that are unlikely to apply in practice. Moreover, if a bipolar dimension is divided into two so that researchers can test bipolarity, our model shows that the correlation between the two can be far from -1; thus, strategies based upon Pearson product-moment correlations and their factor analyses do not test if variables are opposites. Moreover, the two parts need not be mutually exclusive; thus, measures of co-occurrence do not test if variables are opposites. We offer alternative strategies for testing if variables are opposites, strategies based upon censored data analysis. Our model and findings have implications not just for testing bipolarity, but also for associated theory and measurement, and they expose potential artifacts in correlational and dimensional analyses involving any type of negative relations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing bipolarity.\",\"authors\":\"Kimberly A Barchard, James M Carroll, Shawn Reynolds, James A Russell\",\"doi\":\"10.1037/met0000707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many psychological dimensions seem bipolar (e.g., happy-sad, optimism-pessimism, and introversion-extraversion). However, seeming opposites frequently do not act the way researchers predict real opposites would: having correlations near -1, loading on the same factor, and having relations with external variables that are equal in magnitude and opposite in sign. We argue these predictions are often incorrect because the bipolar model has been misspecified or specified too narrowly. We therefore explicitly define a general bipolar model for ideal error-free data and then extend this model to empirical data influenced by random and systematic measurement error. Our model shows the predictions above are correct only under restrictive circumstances that are unlikely to apply in practice. Moreover, if a bipolar dimension is divided into two so that researchers can test bipolarity, our model shows that the correlation between the two can be far from -1; thus, strategies based upon Pearson product-moment correlations and their factor analyses do not test if variables are opposites. Moreover, the two parts need not be mutually exclusive; thus, measures of co-occurrence do not test if variables are opposites. We offer alternative strategies for testing if variables are opposites, strategies based upon censored data analysis. Our model and findings have implications not just for testing bipolarity, but also for associated theory and measurement, and they expose potential artifacts in correlational and dimensional analyses involving any type of negative relations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000707\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000707","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
许多心理维度似乎是两极的(例如,快乐-悲伤,乐观-悲观,内向-外向)。然而,表面上的对立往往不会像研究人员预测的那样发挥作用:相关性接近-1,加载相同的因素,与外部变量的关系大小相等,符号相反。我们认为这些预测往往是不正确的,因为双极模型被错误地指定或指定得太窄。因此,我们明确定义了理想无误差数据的一般双极模型,然后将该模型扩展到受随机和系统测量误差影响的经验数据。我们的模型表明,上述预测只有在不太可能应用于实践的限制性条件下才是正确的。此外,如果将双相维度分为两个,以便研究人员可以测试双极性,我们的模型显示两者之间的相关性可以远离-1;因此,基于皮尔逊积矩相关性及其因素分析的策略不能测试变量是否相反。此外,这两个部分不一定是相互排斥的;因此,共现的度量不能检验变量是否相反。我们提供了测试变量是否相反的替代策略,基于审查数据分析的策略。我们的模型和发现不仅对测试双极性有影响,而且对相关的理论和测量也有影响,并且它们揭示了涉及任何类型的负相关的相关和维度分析中的潜在伪影。(PsycInfo Database Record (c) 2024 APA,版权所有)。
Many psychological dimensions seem bipolar (e.g., happy-sad, optimism-pessimism, and introversion-extraversion). However, seeming opposites frequently do not act the way researchers predict real opposites would: having correlations near -1, loading on the same factor, and having relations with external variables that are equal in magnitude and opposite in sign. We argue these predictions are often incorrect because the bipolar model has been misspecified or specified too narrowly. We therefore explicitly define a general bipolar model for ideal error-free data and then extend this model to empirical data influenced by random and systematic measurement error. Our model shows the predictions above are correct only under restrictive circumstances that are unlikely to apply in practice. Moreover, if a bipolar dimension is divided into two so that researchers can test bipolarity, our model shows that the correlation between the two can be far from -1; thus, strategies based upon Pearson product-moment correlations and their factor analyses do not test if variables are opposites. Moreover, the two parts need not be mutually exclusive; thus, measures of co-occurrence do not test if variables are opposites. We offer alternative strategies for testing if variables are opposites, strategies based upon censored data analysis. Our model and findings have implications not just for testing bipolarity, but also for associated theory and measurement, and they expose potential artifacts in correlational and dimensional analyses involving any type of negative relations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.